自学内容网 自学内容网

5G 现网信令参数学习(1) - MIB

MIB消息中的参数

systemFrameNumber '000101'B,
subCarrierSpacingCommon scs30or120,
ssb-SubcarrierOffset 6,
dmrs-TypeA-Position pos2,
pdcch-ConfigSIB1 
{
  controlResourceSetZero 10,
  searchSpaceZero 4
},
cellBarred notBarred,
intraFreqReselection allowed,
spare '1'B

1. systemFrameNumber

系统帧号,总共10比特,但消息中只携带6比特MSB,剩余4比特LSB由信道编码决定,见38.212 7.1。对于接收方(UE),在解析信道编码的时候会自动获得4比特LSB。

2. subCarrierSpacingCommon

用于SIB1, 初始接入中的Msg2/4 MsgB,paging,广播SI消息的子载波间隔。UE在接收MIB时,会判断出当前载波是FR1还是FR2的,因此参数值scs30or120,如果是FR1,则scs=30kHz,如果是FR2,则scs=120kHz;其它取值类似。

3. ssb-SubcarrierOffset

该参数和确定SSB的频域起始位置有关,比较复杂,下面将按照思路顺序一一介绍。

3.1 PointA

按照38.211 4.4.4.2的描述:“Point A serves as a common reference point for resource block grids”,意思是Point A就是整个RB网格的参考点、或者说起点,说得通俗点就是LTE中通常认为的PRB0的频域起始位置。

那么为什么不直接定义为PRB0呢?这个和5G引入的BWP有关,5G在资源调度的时候,实际考虑的整个资源网格实际上是一个BWP,而不是整个带宽。因此在5G中,PRB0更恰当地应该表述为某个BWP的起始位置,而不是整个带宽的起始位置。

Point A涉及两个参数:

  • offsetToPointA:协议上的描述,简单地说,就是SSB起始位置和Point A之间的频率偏移(后面会提到,其实SSB的频域起始位置并不完全由这个参数确定)。该参数表示为RB的个数(注意:不是子载波个数),并且假定了SCS=15kHz(FR1)或者SCS=60kHz(FR2)。因为5G中引入了numerologies,所以一个RB的频率宽度并不是固定的,所以必须给定一个SCS,这样才能得到一个固定的频率宽度。
  • absoluteFrequencyPointA:这个参数就是Point A的频率位置,以ARFCN的形式表述。可能会有一个疑问:absoluteFrequencyPointA不是已经能够确定Point A的位置了么?为什么还需要offsetToPointA?这个和小区搜索过程有关。简单地说,小区搜素中,是先确定了SSB的位置,然后才能确定PointA的位置。

3.2 k_SSB与ssb-SubcarrierOffset

参数k_{SSB}定义在38.211 7.4.3.1,表示SSB的频域起始位置(最小编号的子载波)到CRBN_{CRB}^{SSB}之间的频率偏移,其中N_{CRB}^{SSB}由参数offsetToPointA确定。也就是说,Point A和SSB真实的频率偏移是“offsetToPointA k_{SSB}”,当然这两个参数的单位需要统一,比如offsetToPointA 需要换算成子载波个数。

而ssb-SubcarrierOffset和k_{SSB}的关系定义在38.211 7.4.3.1:

上述文字包含了共享频谱和非共享频谱两种情形。对于一般的授权网络,属于非共享频谱,并且一般不是毫米波(FR2)网络。此时:ssb-SubcarrierOffset仅仅定义了k_{SSB}的其中4个LSBs,而k_{SSB}的MSB则在对PBCH payload进行信道编码时确定,即38.212的7.1.1中的\bar{a}_{\bar{A}+5}

PBCH payload的信道编译以及\bar{a}_{\bar{A}+5}的产生,可以参考38.212的7.1.1,这里就不展开了。

结论:ssb-SubcarrierOffset加上解析PBCH payload之后获得的比特\bar{a}_{\bar{A}+5}作为MSB,共同确定SSB的频域起始位置(最小编号的子载波)到CRBN_{CRB}^{SSB}之间的频率偏移,再加上由offsetToPointA确定的CRBN_{CRB}^{SSB},最终确定了SSB频域起始位置到Point A(CRB0)之间的频率偏移。

4. dmrs-TypeA-Position

该参数定义了PDSCH和PUSCH的DM-RS的时域位置,即位于slot的哪个symbol上。PDSCH的时域位置有TypeA和TypeB两种定义,见38.214的5.1.2.1和6.1.2.1。该参数仅仅定义了TypeA的时域位置。

示例中,参数的值为"pos2",表示时隙中的第3个OFDM symbol。

5. pdcch-ConfigSIB1

该参数确定了SIB1的PDCCH的时频位置,为下一步解析SIB1作准备,其中:

  • controlResourceSetZero用于获取CORESET 0的频域位置
  • searchSpaceZero用于CORESET 0的时域位置

CORESET即PDCCH的ControlResourceSet,CORESET 0一般用于common search space中的PDCCH的ControlResourceSet。关于CORESET的话题,就比较复杂了,这里不作展开。简单来说,和LTE中由CCE和Aggregation Level确定PDCCH的思想类似,只不过5G更加复杂和灵活,因此定义了很多集合,以表格的形式反应在协议中。而参数controlResourceSetZero和searchSpaceZero则指明了这些表格的索引。因此示例中的controlResourceSetZero 10和searchSpaceZero 4需要具体查询协议中的对应表格来确定频域和时域位置。

另外,关于协议中提到了ssb-SubcarrierOffset 指示SIB1不存在的case,通过查询Chat-GPT,得到了以下有关该case的背景原因,供参考:

"Why ssb-SubcarrierOffset May Indicate No SIB1:

  1. SIB1 Not Required in Certain Deployments (e.g., NSA Mode):

    • In Non-Standalone (NSA) mode, the UE typically uses an existing 4G LTE connection for initial access and system information acquisition. In this mode, the 5G network relies on the LTE anchor for control plane signaling and system information, so SIB1 transmission over 5G NR may not be necessary.
    • The MIB in such cases would indicate that no SIB1 is being transmitted by setting specific values for ssb-SubcarrierOffset that imply the absence of SIB1.
    • The UE in NSA mode can derive essential system information from the LTE network, so there's no need to broadcast SIB1 over 5G NR.
  2. **Operation in mmWave and FR2 Bands:

    • In the mmWave (millimeter wave) or FR2 (Frequency Range 2) bands, the network may optimize for specific use cases (like small cells or beam-based access) where broadcasting system information in the traditional sense (such as SIB1) may not be as relevant.
    • Instead, the network may use more direct, on-demand, or unicast-based information delivery mechanisms, leading to the non-transmission of SIB1.
    • In this case, the ssb-SubcarrierOffset would signal that no SIB1 is available.
  3. Cell-Specific Optimization for Different UEs:

    • In certain network deployments, some UEs might not require SIB1 for operation. For example, in highly dense or specialized networks (e.g., private networks, industrial IoT), SIB1 might be excluded to minimize overhead and enhance efficiency.
    • The network can inform UEs via the MIB that SIB1 is not being broadcast by setting the ssb-SubcarrierOffset to a value indicating the absence of SIB1.
  4. Dynamic System Information Transmission (On-Demand SIB1):

    • In some 5G networks, SIB1 may not be broadcast continuously but rather be available on-demand. When a UE needs SIB1 information, it can request it from the network using RRC signaling. This dynamic approach is more efficient in certain scenarios, such as low-power, IoT-heavy environments where reducing broadcast overhead is important.
    • In such cases, the MIB would indicate that SIB1 is not being broadcast by adjusting the ssb-SubcarrierOffset, signaling to the UE that it needs to request SIB1 when required.
  5. Flexibility for Network Operators:

    • 5G NR is designed to be highly flexible, and operators can choose to configure the network to broadcast or omit certain system information blocks depending on the deployment scenario, type of UE, or specific use case.
    • The ssb-SubcarrierOffset in the MIB can be used to signal the absence of SIB1 in specific configurations, allowing the network to optimize its operation by reducing unnecessary signaling overhead when SIB1 is not needed.


原文地址:https://blog.csdn.net/tony19820314/article/details/142958004

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!