图的存储与BFS
图的存储
在 OI 中,想要对图进行操作,就需要先学习图的存储方式。
约定
本文默认读者已阅读并了解了 图论相关概念 中的基础内容,如果在阅读中遇到困难,也可以在 图论相关概念 中进行查阅。
在本文中,用n代指图的点数,用m代指图的边数,用代指点u的出度,即以u为出发点的边数。
直接存边
方法
使用一个数组来存边,数组中的每个元素都包含一条边的起点与终点(带边权的图还包含边权)。(或者使用多个数组分别存起点,终点和边权。)
#include <iostream>
#include <vector>
using namespace std;
struct Edge {
int u, v;
};
int n, m;
vector<Edge> e;
vector<bool> vis;
bool find_edge(int u, int v) {
for (int i = 1; i <= m; ++i) {
if (e[i].u == u && e[i].v == v) {
return true;
}
}
return false;
}
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int i = 1; i <= m; ++i) {
if (e[i].u == u) {
dfs(e[i].v);
}
}
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
e.resize(m + 1);
for (int i = 1; i <= m; ++i) cin >> e[i].u >> e[i].v;
return 0;
}
应用
由于直接存边的遍历效率低下,一般不用于遍历图。
在 Kruskal 算法 中,由于需要将边按边权排序,需要直接存边。
在有的题目中,需要多次建图(如建一遍原图,建一遍反图),此时既可以使用多个其它数据结构来同时存储多张图,也可以将边直接存下来,需要重新建图时利用直接存下的边来建图。
邻接矩阵
方法
使用一个二维数组 adj
来存边,其中 adj[u][v]
为 1 表示存在u到v的边,为 0 表示不存在。如果是带边权的图,可以在 adj[u][v]
中存储u到v的边的边权。
#include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<bool>> adj;
bool find_edge(int u, int v) { return adj[u][v]; }
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int v = 1; v <= n; ++v) {
if (adj[u][v]) {
dfs(v);
}
}
}
int main() {
cin >> n >> m;
vis.resize(n + 1);
adj.resize(n + 1, vector<bool>(n + 1));
for (int i = 1; i <= m; ++i) {
int u, v;
cin >> u >> v;
adj[u][v] = true;
}
return 0;
}
应用
邻接矩阵只适用于没有重边(或重边可以忽略)的情况。
其最显著的优点是可以查询一条边是否存在。
由于邻接矩阵在稀疏图上效率很低(尤其是在点数较多的图上,空间无法承受),所以一般只会在稠密图上使用邻接矩阵。
邻接表
方法
使用一个支持动态增加元素的数据结构构成的数组,如 vector<int> adj[n + 1]
来存边,其中 adj[u]
存储的是点u的所有出边的相关信息(终点、边权等)。
#include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<int>> adj;
bool find_edge(int u, int v) {
for (int i = 0; i < adj[u].size(); ++i) {
if (adj[u][i] == v) {
return true;
}
}
return false;
}
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int i = 0; i < adj[u].size(); ++i) dfs(adj[u][i]);
}
int main() {
cin >> n >> m;
vis.resize(n + 1);
adj.resize(n + 1);
for (int i = 1; i <= m; ++i) {
int u, v;
cin >> u >> v;
adj[u].push_back(v);
}
return 0;
}
BFS
伪代码
bfs(s) {
q = new queue()
q.push(s), visited[s] = true
while (!q.empty()) {
u = q.pop()
for each edge(u, v) {
if (!visited[v]) {
q.push(v)
visited[v] = true
}
}
}
}
原文地址:https://blog.csdn.net/m0_54373077/article/details/143897869
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!