自学内容网 自学内容网

四、VGA项目:联合精简帧+双fifo+sobel算法 实现VGA显示

前言:该项目实际上是在很多基础的小练习上合成起来的,例如涉及到uart(rs232)的数据传输、双fifo流水线操作、VGA图像显示,本次内容在此基础上又增添了sobel算法,能实现图像的边沿监测并VGA显示。


在这里插入图片描述

1.项目描述

通过串口助手把 200 行 x200 列数据传入 FPGA,对应三行三列的九个数进行 sobel算法,把边缘检测的结果(198x198的数据)通过 vga 来显示,用两种颜色来区分是否是边界点(边界用白色显示,其他用黑色)。

2.sobel算法解析:

在这里插入图片描述

  1. 把图像每三行三列的数据分别乘上算子中对应位置的值再相加。然后进行如下运算,得到相应方向(x 和 y)的 Dx 和 Dy。
    Dx=(a3-a1)+(b3-b1)*2+c3-c1;
    Dy=(a1-c1)+(a2-c2)*2+a3-c3;

  2. 对上面求得的 Dx 和 Dy 做平方和的平方根,再取近似值 Dx 和 Dy 的绝对值的和得到 Dxy:

在这里插入图片描述

  1. 如果 Dxy 的值大于一个阈值(这个阈值是多次尝试试出来的,本次项目中设置为5),表示该点为边界点,就让 VGA 显示一个白点,否则显示黑点。

  2. 把计算的结果通过 vga 显示,显示器会把是边界点的以白色像素显示,不是边界点的以黑色像素点显示,于是得到了一幅图像的轮廓

在这里插入图片描述

3.模块结构示意图:

在这里插入图片描述

其中:
uart_rx模块在:手写一个uart协议——rs232
sobel_ctrl模块的核心是双fifo的流水线操作參考(需在此基础上进行改动):双fifo流水线操作
VGA_shift模块參考(原移动框为200x200这里变成198x198,且添加了ram方便rgb图像的存储与读取):VGA接口驱动与图像显示动态移动

4.sobel_ctrl模块设计

4.1波形设计

在这里插入图片描述

4.2代码

module sobel_ctrl(
    input wire clk,
    input wire rst,
    input wire [7:0] rx_data,
    input wire pi_flag,
    output reg [7:0] rgb,
    output reg po_flag
    );
reg[9:0] cnt_col,cnt_row;
reg wr_en1_r,wr_en2_r;
wire wr_en1,wr_en2;

reg [7:0] data_in1_r;
wire [7:0] data_in1;
wire [7:0] dout1,dout2;

reg [7:0] dout1_t,dout1_tt,dout2_t,dout2_tt;
reg [7:0] rx_data_t,rx_data_tt;
reg rd_en_r;
wire rd_en;

reg shift_flag;

reg flag_d;

reg [7:0] Dx,Dy;

reg flag_abs,flag_dxy,flag_rgb;
reg [7:0] abs_dx,abs_dy;
reg [7:0] dxy;

parameter COL_MUX=199;
parameter ROW_MUX=199;
parameter VALUR=5;  //不断调试得到一个合适的阈值

// cnt_col
always @(posedge clk) begin 
    if(rst==1'b1) begin
        cnt_col <= 'd0;
    end 
    else if (pi_flag==1'b1 && cnt_col==COL_MUX) begin
         cnt_col<='d0;
    end
    else if (pi_flag==1'b1) begin
         cnt_col<=cnt_col+1'b1;
    end
end

// cnt_row
always @(posedge clk) begin 
    if(rst==1'b1) begin
        cnt_row <= 'd0;
    end
    else if (cnt_row==ROW_MUX && pi_flag==1'b1 && cnt_col==COL_MUX) begin
        cnt_row<='d0;
    end
    else if (pi_flag==1'b1 && cnt_col==COL_MUX) begin
       cnt_row<=cnt_row+1'b1;
    end
end

// wr_en1_r
assign wr_en1=wr_en1_r;
always @(posedge clk) begin 
    if(rst==1'b1) begin
        wr_en1_r <= 'd0;
    end
    else if (cnt_row=='d0) begin
        wr_en1_r<=pi_flag;
    end
    else if (cnt_row>'d1 && cnt_row<ROW_MUX) begin
        wr_en1_r<=shift_flag;
    end
end

// wr_en2_r
assign wr_en2=wr_en2_r;
always @(posedge clk) begin 
    if(rst==1'b1) begin
        wr_en2_r <= 'd0;
    end 
    else if (cnt_row>'d0 && cnt_row<ROW_MUX) begin
        wr_en2_r<=pi_flag;
    end
    else
        wr_en2_r<='d0;
end

// data_in1_r
assign data_in1=data_in1_r;
always @(posedge clk) begin 
    if(rst==1'b1) begin
         data_in1_r<= 'd0;
    end 
    else if (cnt_row=='d0) begin
        data_in1_r<=rx_data;
    end
    else if (cnt_row>'d1 && cnt_row<ROW_MUX) begin
       data_in1_r<=dout2;
    end
end

// rd_en_r
assign rd_en=rd_en_r;

always @(posedge clk) begin 
    if(rst==1'b1) begin
         rd_en_r<= 'd0;
    end 
    else if (cnt_row>'d1) begin
        rd_en_r<=pi_flag;
    end
    else 
        rd_en_r<='d0;
end

// shift_flag
always @(posedge clk) begin 
    if(rst==1'b1) begin
        shift_flag <= 'd0;
    end 
    else
        shift_flag<=rd_en_r;
end

// dout1_t,dout1_tt,dout2_t,dout2_tt,rx_data_t,rx_data_tt
always @(posedge clk) begin 
if (shift_flag==1'b1) begin
{dout1_tt,dout1_t}={dout1,dout1_t};
{dout2_tt,dout2_t}={dout2,dout2_t};
{rx_data_tt,rx_data_t}={rx_data_t,rx_data};
end
end

always @(posedge clk) begin 
if(rst==1'b1) begin
flag_d <= 'd0;
end 
else if (cnt_row>=2 && cnt_col>2) begin
flag_d<=rd_en_r;
end
end

always @(posedge clk) begin 
if(rst==1'b1) begin
Dx <= 'd0;
Dy <= 'd0;
end 
else if (flag_d==1'b1) begin
Dx<=(dout1_tt-dout1)+(dout2_tt-dout2)<<1+(rx_data_tt-rx_data);
Dy<=(dout1_tt-rx_data_tt)+(dout1_t-rx_data_t)<<1+(dout1-rx_data);
end

end

always @(posedge clk) begin 
if (rst==1'b1) begin
flag_abs<='d0;
flag_dxy<='d0;
flag_rgb<='d0;
po_flag<='d0;

end
else
{po_flag,flag_rgb,flag_dxy,flag_abs}<={flag_rgb,flag_dxy,flag_abs,flag_d};
end

// abs_dx
always @(posedge clk) begin 
if(rst==1'b1) begin
 abs_dx<='d0;
end 
else if (flag_abs==1'b1 ) begin
if (dx[7]==1'b1) begin
abs_dx<=(~Dx)+1'b1;
end
else
abs_dx<=Dx;
end
end

// abs_dy
always @(posedge clk) begin 
if(rst==1'b1) begin
abs_dy <= 'd0;
end 
else if (flag_abs==1'b1) begin
if (dy[7]==1'b1) begin
abs_dy<=(~Dy)+1'b1;
end
else 
abs_dy<=Dy;
end
end

// dxy
always @(posedge clk) begin 
if(rst==1'b1) begin
 dxy<= 'd0;
end 
else if (flag_dxy==1'b1) begin
dxy<=abs_dx+abs_dy;
end
end

// rgb
always @(posedge clk) begin 
if(rst==1'b1) begin
rgb <= 'd0;
end 
else if (flag_rgb==1'b1) begin
if (dxy>VALUR) begin
rgb<=8'hff;
end
else
rgb<=8'h00;
end
end


sfifo_8X256 sfifo1_8X256 (
  .clk(clk),      // input wire clk
  .din(data_in1),      // input wire [7 : 0] din
  .wr_en(wr_en1),  // input wire wr_en
  .rd_en(rd_en),  // input wire rd_en
  .dout(dout1),    // output wire [7 : 0] dout
  .full(),    // output wire full
  .empty()  // output wire empty
);


sfifo_8X256 sfifo2_8X256 (
 .clk(clk),      // input wire clk
  .din(rx_data),      // input wire [7 : 0] din
  .wr_en(wr_en2),  // input wire wr_en
  .rd_en(rd_en),  // input wire rd_en_r
  .dout(dout2),    // output wire [7 : 0] dout
  .full(),    // output wire full
  .empty()  // output wire empty
);
endmodule

5.VGA_shift模块设计

5.1 显示效果示意图:

在这里插入图片描述

5.2 简易波形示意图:

在这里插入图片描述

5.3 代码

module vga_shift(
    input wire sclk,//50mhz
    input wire clk_25,
    input wire rst,
    input wire [7:0] rgb_in,
    input wire pi_flag,
    output reg hsync,
    output reg vsync,
    output reg [7:0] rgb
    );

parameter HSYNC_END=95;
parameter CNT_H_END=799;

parameter VSYNC_END=1;
parameter CNT_V_END=524;

parameter RED=8'b11100000;
parameter GREEN=8'b00011100;
parameter BLUE=8'b00000011;
parameter WHITE=8'b11111111;

parameter ADDR_MUX=16'd39203;
reg [9:0] cnt_h;
reg [9:0] cnt_v;

reg [8:0] x;
reg [8:0] y;

reg flag_x;
reg flag_y;

reg [15:0] addra,addrb;
wire [7:0] doutb;

  // cnt_h
  always @(posedge clk_25) begin 
       if(rst==1'b1) begin
            cnt_h<= 'd0;
       end 
       else if (cnt_h==CNT_H_END) begin
           cnt_h<='d0;
       end
       else 
            cnt_h<=cnt_h+1'b1;
   end 

// hsync
   always @(posedge clk_25) begin 
       if(rst==1'b1) begin
            hsync<= 'd1;
       end
       else if (cnt_h==CNT_H_END) begin
           hsync<='d1;
       end 
       else if (cnt_h==HSYNC_END) begin
           hsync<='d0;
       end
   end

// cnt_v
always @(posedge clk_25) begin 
    if(rst==1'b1) begin
        cnt_v <= 'd0;
    end 
    else if (cnt_v==CNT_V_END && cnt_h==CNT_H_END) begin
        cnt_v<='d0;
    end
    else if (cnt_h==CNT_H_END) begin
        cnt_v<=cnt_v+1'b1;
    end
end

// vsync
always @(posedge clk_25) begin
    if(rst==1'b1) begin
        vsync <= 'd1;
    end 
    else if (cnt_v==VSYNC_END && cnt_h==CNT_H_END) begin
        vsync<='d0;
    end
    else if (cnt_v==CNT_V_END && cnt_h==CNT_H_END) begin
        vsync<='d1;
    end
   
end
// x
always @(posedge clk_25) begin 
if(rst==1'b1) begin
x <= 'd0;
end 
else if (cnt_h==CNT_H_END && cnt_v==CNT_V_END && flag_x=='d0) begin
x<=x+1'b1;
end
else if (cnt_h==CNT_H_END && cnt_v==CNT_V_END && flag_x=='d1) begin
x<=x-1'b1;
end
end

// flag_x
always @(posedge clk_25) begin 
if(rst==1'b1) begin
 flag_x<= 'd0;
end 
else if (cnt_h==CNT_H_END && cnt_v==CNT_V_END && x=='d441 && flag_x=='d0) begin
flag_x<='d1;
end
else if (cnt_h==CNT_H_END && cnt_v==CNT_V_END && x=='d1 && flag_x=='d1) begin
flag_x<='d0;
end
end

//y
always @(posedge clk_25) begin 
if(rst==1'b1) begin
 y<= 'd0;
end 
else if (cnt_h==CNT_H_END && cnt_v==CNT_V_END && flag_y=='d0) begin
y<=y+1'b1;
end 
else if (cnt_h==CNT_H_END && cnt_v==CNT_V_END && flag_y=='d1) begin
y<=y-1'b1;
end
end

// flag_y
always @(posedge clk_25) begin 
if(rst==1'b1) begin
flag_y <= 'd0;
end 
else if (cnt_h==CNT_H_END && cnt_v==CNT_V_END && y=='d281 && flag_y<='d0) begin
flag_y<='d1;
end
else if (cnt_h==CNT_H_END && cnt_v==CNT_V_END && y=='d1 && flag_y<='d1) begin
flag_y<='d0;
end
end

// rgb 
always @(posedge clk_25) begin 
    if(rst=='b1) begin
         rgb<= 'd0;
    end
    //注意198x198像素时,白框范围需要改变
    else if (cnt_h>=144+x && cnt_h<=341+x && cnt_v>=35+y && cnt_v<=232+y) begin
    rgb<=doutb;
    end
    else if (cnt_h>=144 && cnt_h<=783) begin
        if (cnt_v>=35 && cnt_v<=194) begin
            rgb<=RED;
        end
        else if (cnt_v>=195 && cnt_v<=354) begin
            rgb<=GREEN;
        end
        else if (cnt_v>=355 && cnt_v<=514) begin
            rgb<=BLUE;
        end
    end 
    else
        rgb<='d0;
    
end


// addra  这里注意写ram的时钟为50mhz,读ram的时钟为25mhz(VGA的时钟)
always @(posedge sclk) begin 
  if(rst) begin
     addra<= 'd0;
  end
  else if (pi_flag==1'b1 && addra==ADDR_MUX) begin
    addra<='d0;
  end
  else if (pi_flag==1'b1) begin
    addra<=addra+1'b1;
  end 

end

// addrb 注意ram读数据相对于读地址有一拍延迟,所以地址要早一拍给出
always @(posedge clk_25) begin 
  if(rst==1'b1) begin
    addrb <= 'd0;
  end 
  else if (cnt_h>=144+x-1 && cnt_h<=341+x-1 && cnt_v>=35+y && cnt_v<=232+y && addrb==ADDR_MUX) begin
    addrb<='d0;
  end
  else if (cnt_h>=144+x-1 && cnt_h<=341+x-1 && cnt_v>=35+y && cnt_v<=232+y) begin
    addrb<=addrb+1'b1;
  end
end


asblk_mem_8x198x198 your_instance_name (
  .clka(sclk),    // input wire clka
  .wea(pi_flag),      // input wire [0 : 0] wea
  .addra(addra),  // input wire [15 : 0] addra
  .dina(rgb_in),    // input wire [7 : 0] dina
  .clkb(clk_25),    // input wire clkb
  .addrb(addrb),  // input wire [15 : 0] addrb
  .doutb(doutb)  // output wire [7 : 0] doutb
);

endmodule

6.uart_rx模块设计(直接用之前的设计 略)

7.顶层设计

module top_sobel(
input wire clk,//50mhz
input wire rst,
input wire rx,
output wire vsync,
output wire hsync,
output wire [7:0]rgb
    );


wire clk_out25;
wire clk_out50;

wire rx_data;
wire pi_flag_rx_to_sobel;
wire pi_flag_sobel_to_vga;

wire [7:0] rgb_in;

 clk_wiz_gen25 instance_name
   (
    // Clock out ports
    .clk_out50(clk_out50),     // output clk_out50
    .clk_out25(clk_out25),     // output clk_out25
   // Clock in ports
    .clk_in50(clk));      // input clk_in50
uart_rx inst_uart_rx (
.clk     (clk_out50),
.rst     (rst),
.rx      (rx),
.po_data (rx_data),
.po_flag (pi_flag_rx_to_sobel)
);
sobel_ctrl  inst_sobel_ctrl (
.clk     (clk_out50),
.rst     (rst),
.rx_data (rx_data),
.pi_flag (pi_flag_rx_to_sobel),
.rgb     (rgb_in),
.po_flag (pi_flag_sobel_to_vga)
);
vga_shift inst_vga_shift (
.sclk    (clk_out50),
.clk_25  (clk_out25),
.rst     (rst),
.rgb_in  (rgb_in),
.pi_flag (pi_flag_sobel_to_vga),
.hsync   (hsync),
.vsync   (vsync),
.rgb     (rgb)
);


endmodule

8.最终的显示效果:

上位机通过MATLAB处理,用友善助手下发原图像数据:

在这里插入图片描述
经过一系列图像处理后,最终在vga的显示效果:
在这里插入图片描述


原文地址:https://blog.csdn.net/k7126685/article/details/138472379

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!