SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
预测效果
基本介绍
1.Matlab实现SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比,含优化前后对比,含优化前后对比,要求Matlab2023版以上;
2.单变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。
模型描述
SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比,含优化前后对比。
下面是这个模型的主要组成部分和工作流程的简要说明:
数据预处理:首先,对时间序列数据进行预处理。划分训练集和测试集等。
卷积神经网络(CNN):通过使用CNN,模型可以自动学习输入数据的空间特征。CNN通常由多个卷积层和池化层组成,可以有效地提取输入数据的局部特征。
双向门控循环单元(BiGRU):双向门控循环单元是一种适用于序列数据建模的循环神经网络(RNN)变体。双向门控循环单元具有记忆单元和门控机制,可以捕捉输入数据的长期依赖关系。通过双向门控循环单元层,模型可以学习序列数据的时间依赖性。
多头注意力机制(Mutilhead Attention):多头注意力机制允许模型同时关注输入序列的不同部分。它通过将序列数据映射到多个子空间,并计算每个子空间的注意力权重来实现这一点。这样可以提高模型对不同时间步和特征之间关系的建模能力。
减法优化器优化算法:减法优化器优化算法是一种基于智能的优化算法,可以用于调整模型的超参数和优化训练过程。通过应用减法优化器优化算法算法,可以提高模型的性能和收敛速度。
融合和预测:最后,通过融合CNN、BiGRU和多头注意力机制的输出,模型可以生成对未来时间步的多变量时间序列的预测。
需要注意的是,这是一种概念性的模型描述,具体实现的细节可能因应用场景和数据特征而有所不同。模型的性能和效果还需要根据具体问题进行评估和调优。
程序设计
layers0 = [ ...
% 输入特征
sequenceInputLayer([numFeatures,1,1],'name','input') %输入层设置
sequenceFoldingLayer('name','fold') %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
% CNN特征提取
convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1') %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
batchNormalizationLayer('name','batchnorm1') % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
reluLayer('name','relu1') % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
% 池化层
maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool') % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
% 展开层
sequenceUnfoldingLayer('name','unfold') %独立的卷积运行结束后,要将序列恢复
%平滑层
flattenLayer('name','flatten')
lstmLayer(25,'Outputmode','last','name','hidden1')
selfAttentionLayer(2,2) %创建2个头,2个键和查询通道的自注意力层
dropoutLayer(0.1,'name','dropout_1') % Dropout层,以概率为0.2丢弃输入
fullyConnectedLayer(1,'name','fullconnect') % 全连接层设置(影响输出维度)(cell层出来的输出层) %
regressionLayer('Name','output') ];
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
pNum = round( pop * P_percent ); % The population size of the producers
lb= c.*ones( 1,dim ); % Lower limit/bounds/ a vector
ub= d.*ones( 1,dim ); % Upper limit/bounds/ a vector
%Initialization
for i = 1 : pop
x( i, : ) = lb + (ub - lb) .* rand( 1, dim );
fit( i ) = fobj( x( i, : ) ) ;
end
pFit = fit;
pX = x;
XX=pX;
[ fMin, bestI ] = min( fit ); % fMin denotes the global optimum fitness value
bestX = x( bestI, : ); % bestX denotes the global optimum position corresponding to fMin
% Start updating the solutions.
for t = 1 : M
[fmax,B]=max(fit);
worse= x(B,:);
r2=rand(1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1 : pNum
if(r2<0.9)
r1=rand(1);
a=rand(1,1);
if (a>0.1)
a=1;
else
a=-1;
end
x( i , : ) = pX( i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
else
aaa= randperm(180,1);
if ( aaa==0 ||aaa==90 ||aaa==180 )
x( i , : ) = pX( i , :);
end
theta= aaa*pi/180;
x( i , : ) = pX( i , :)+tan(theta).*abs(pX(i , : )-XX( i , :)); % Equation (2)
end
x( i , : ) = Bounds( x(i , : ), lb, ub );
fit( i ) = fobj( x(i , : ) );
end
[ fMMin, bestII ] = min( fit ); % fMin denotes the current optimum fitness value
bestXX = x( bestII, : ); % bestXX denotes the current optimum position
R=1-t/M; %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Xnew1 = bestXX.*(1-R);
Xnew2 =bestXX.*(1+R); %%% Equation (3)
Xnew1= Bounds( Xnew1, lb, ub );
Xnew2 = Bounds( Xnew2, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Xnew11 = bestX.*(1-R);
Xnew22 =bestX.*(1+R); %%% Equation (5)
Xnew11= Bounds( Xnew11, lb, ub );
Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = ( pNum + 1 ) :12 % Equation (4)
x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));
x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );
fit(i ) = fobj( x(i,:) ) ;
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
原文地址:https://blog.csdn.net/kjm13182345320/article/details/144278285
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!