电子商务人工智能指南 3/6 - 聊天机器人和客户服务
介绍
81% 的零售业高管表示, AI 至少在其组织中发挥了中等至完全的作用。然而,78% 的受访零售业高管表示,很难跟上不断发展的 AI 格局。 近年来,电子商务团队加快了适应新客户偏好和创造卓越数字购物体验的需求。采用 AI 不再是一种选择,而是零售商推动规模增长和保持市场差异化的必要条件。电子商务公司现在正在使用 AI 来创建新的客户参与形式,增强在线结账解决方案,并推动数字商务的经济高效流程。
本指南将全面概述人工智能在电子商务公司的主要应用,并分享 Scale 在零售领域的经验最佳实践。
电子商务人工智能:为什么它很重要?
人工智能对电子商务有多种益处:
增强客户体验: 电子商务的 AI 解决方案可以帮助公司个性化产品推荐、改善搜索结果并更好地了解客户情绪。借助准确的个性化和推荐机器学习模型,公司可以帮助减少购买时间、在产品详细信息页面上准确描述产品并更好地了解客户行为。通过投资准确的 ML 模型,团队可以实现提高购物转化率和提高客户满意度的目标。此外,电子商务公司可以通过删除违反平台准则的内容(从用户生成的内容到商家特定数据)来提高信任度和安全性。
最大化盈利能力: ML 模型可以帮助根据购物和浏览历史提供准确且有针对性的产品推荐,并细分客户分析以提供更准确的广告。通过使用 AI 丰富内容元数据,团队可以更好地了解内容和产品格局。这使电子商务公司能够更好地专注于产品和内容增长工作,并尽早缩小趋势范围。
加速运营流程: 购物和内容趋势瞬息万变,而手动操作流程却过于缓慢。加速新商家入职、需求预测和内容优化等运营流程。人机交互等技术可以增强机器学习模型,使其达到人类水平的准确性和质量。
现有的没有人工智能的流程无法满足消费者不断变化的需求。电子商务市场面临三大挑战:
- 成本和投资呈指数级增长: 仅使用内部运营团队来管理电子商务数据和激活新产品通常会抑制增长。手动操作来获取、清理和丰富数据非常耗时。生成新产品资产(例如产品描述和产品摄影)的成本很高。
- 缺乏属性数据: 个性化系统受限于稀疏的属性数据。产品数据可能包含不正确的信息、重复项和缺失的属性,导致搜索和产品推荐效果不佳。用户行为内容元数据不够详细,导致内容推荐系统存在缺陷。
- 手动流程太慢: 消费者行为和内容趋势变化很快。当前系统需要太多时间和流程来发现和展示热门内容,平台在保持客户参与度和转化率方面落后。
在本指南中,我们将解释帮助解决这些挑战的主要用例,并提供帮助您利用 AI 发展业务的路线图。
电子商务中的人工智能:主要用例
电子商务中人工智能有许多不同的应用。在本指南中,我们将重点介绍电子商务中以数据为中心的应用程序的六个主要类别:
- 搜索、广告和发现
- 需求预测和库存管理
- 聊天机器人和客户服务
- 内容理解
- 丰富的产品数据
- 人工智能生成的产品图像
聊天机器人和客户服务
客户服务是保持客户参与度和改善客户情绪的一个越来越重要的组成部分。然而,通过多种渠道满足大量客户请求可能具有挑战性。同样,现场代理的成本可能很高,并且会增加响应时间。人工智能聊天机器人是帮助解决这些客户支持挑战不可或缺的一部分。人工智能聊天机器人是使用自然语言处理和对话式人工智能来帮助响应客户查询的虚拟助手。聊天机器人可以通过四种主要方式支持客户服务:
1. 参与并回应客户询问:聊天机器人可以为产品相关问题提供指导,并回答有关尺寸、产品变体或折扣的常见问题。
2. 进销售流程:聊天机器人可以通过提醒客户他们可能留在购物车中的产品来帮助提供产品推荐并减少购物车放弃率。
3. 提供售后支持:聊天机器人可以提供订单跟踪、退货和换货处理以及收集客户反馈。
ApiSmart
ApiSmart 已经支持18家大模型供应商,n+大模型接入(本地环境可无限多模型);
-
OpenAi
-
Azure
-
Gemini
-
Anthropic
-
DeepInfra
-
Mooshot
-
Zhipu
-
DeepSeek
-
Qianfan
-
Grop
-
Ollama
-
Mistral
-
LMStudio
-
OpenRouter
-
Jan
-
GPT4All
-
通义-阿里
-
混元-腾讯
ApiHug - API Design & Develop New Paradigm.ApiHug - API Design & Develop New Paradigm.https://apihug.com/https://apihug.com/ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happierhttps://apihug.com/zhCN-docs/copilothttps://apihug.com/zhCN-docs/copilot
原文地址:https://blog.csdn.net/AK15221736052/article/details/144252888
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!