PyTorch实战-手写数字识别-单层感知机
1 需求
2 接口
3 示例
import torch
import torch.nn as nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义超参数
batch_size = 64
learning_rate = 0.01
num_epochs = 10
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# 定义单层感知机模型
class SingleLayerPerceptron(nn.Module):
def __init__(self):
super(SingleLayerPerceptron, self).__init__()
self.fc = nn.Linear(784, 10)
def forward(self, x):
x = x.view(-1, 784)
out = self.fc(x)
return out
# 实例化模型
model = SingleLayerPerceptron()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
# 前向传播
outputs = model(data)
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Step [{batch_idx + 1}/{len(train_loader)}], Loss: {loss.item()}')
# 在测试集上评估模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for data, targets in test_loader:
outputs = model(data)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
accuracy = correct / total
print(f'Test Accuracy: {accuracy * 100:.2f}%')
4 参考资料
原文地址:https://blog.csdn.net/pwp032984/article/details/143868856
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!