自学内容网 自学内容网

基数排序算法

1. 排序算法分类

十种常见排序算法可以分为两大类:

  • 比较类排序: 通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。比较类排序算法包括:插入排序、希尔排序、选择排序、堆排序、冒泡排序、快速排序、归并排序
  • 非比较类排序: 不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。非比较类算法包括:计数排序、桶排序、基数排序

2. 算法复杂度

在这里插入图片描述

k是数字的最大位数,n是序列长度。

3. 相关概念

稳定: 如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定: 如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
时间复杂度: 对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
空间复杂度: 是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

4. 基数排序

4.1 什么是基数排序

(1)通过键值得各个位的值,将要排序的元素分配至一些桶中,达到排序的作用
(2)基数排序法是属于稳定性的排序,基数排序法是效率高的稳定排序法
(3)基数排序是桶排序的扩展

4.2 实现原理

所有待比较数值(自然数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。

4.3 实现步骤

(1)确定数组中的最大元素有几位(MAX)(确定执行的轮数)
(2)创建0-9个桶(桶的底层是队列),因为所有的数字元素都是由0~9的十个数字组成
(3)依次判断每个元素的个位,十位至MAX位,存入对应的桶中,出队,存入原数组;直 至MAX轮结束输出数组。
(4)具体实现步骤如下图:
在这里插入图片描述
Java代码实现:

public class RadixSorte {
 
    /**
     * 基数排序
     *
     * @param args
     */
    public static void main(String[] args) {
        int[] arr = {11, 12, 3, 43, 87, 11, 9, 0, 76, 35,
                21, 22, 33, 11, 22, 345, 543, 321, 123,
                456, 987, 789, 876, 12, 23, 3, 1, 9, 999};
        radixSort(arr);
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
    }
 
    private static void radixSort(int[] arr) {
        if (arr == null || arr.length == 0) {
            return;
        }
        // 获取最大值
        int max = arr[0];
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] > max) {
                max = arr[i];
            }
        }
        // 用二维数组模拟桶放入东西,一共有10个桶
        int[][] temp = new int[10][arr.length];
 
        // 元素最大值的长度
        String maxString = max + "";
        int length = maxString.length();
        int temp1 = 1;
        for (int i = 0; i < length; i++) {
            // 用于记录每个桶中放入元素的位置
            int[] count = new int[10];
            for (int i1 = 0; i1 < arr.length; i1++) {
                int i2 = (arr[i1] / temp1) % 10;
                temp[i2][count[i2]] = arr[i1];
                count[i2]++;
            }
            temp1 *= 10;
 
            // 将数据取出放入原数组
            int sum = 0;
            for (int i1 = 0; i1 < count.length; i1++) {
                for (int i2 = 0; i2 < count[i1]; i2++) {
                    arr[sum++] = temp[i1][i2];
                }
            }
        }
    }
 
 
}

参考资料:
https://www.jianshu.com/p/5bf511e5a648
https://blog.csdn.net/qq_52253798/article/details/122930548
https://blog.csdn.net/weixin_44713306/article/details/123356864


原文地址:https://blog.csdn.net/qq_39698985/article/details/135838702

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!