【高等数学&学习记录】隐函数及由参数方程所确定的函数的导数、相关变化率
一、知识点
(一)隐函数的导数
-
显函数
对于形如 y = s i n x y=sinx y=sinx 这种等号左端是因变量,右端是含有自变量的式子,当自变量取定义域内任一值时,由这个式子能确定对应的函数值,这种方式表达的函数叫做显函数.
-
隐函数
对于形如 x + y 3 − 1 = 0 x+y^3-1=0 x+y3−1=0 这种形式的函数称为隐函数.
-
隐函数的显化
把一个隐函数化成显函数叫做隐函数的显化. 但是,有时隐函数的显化是有困难的,甚至是不能的.
-
计算隐函数的导数
方程两边分别对 x x x 求导数,以获得 d y d x \frac{dy}{dx} dxdy 的值.
(二)由参数方程所确定的函数的导数
-
参数方程所确定的函数
一般的,若参数方程 { x = φ ( t ) y = ψ ( t ) \begin{cases}x=\varphi(t) \\ y=\psi(t)\end{cases} {x=φ(t)y=ψ(t) 确定 y y y 与 x x x 间的函数关系,则称此函数关系所表达的函数为由参数方程所确定的函数.
该函数的 x x x 的导数公式为 d y d x = φ ′ ( t ) ψ ′ ( t ) \frac{dy}{dx}=\frac{\varphi '(t)}{\psi '(t)} dxdy=ψ′(t)φ′(t).
(三)相关变化率
- 设 x = x ( t ) x=x(t) x=x(t) 及 y = y ( t ) y=y(t) y=y(t) 都是可导函数,而变量 x x x 与 y y y 间存在某种关系,从而变化率 d x d t \frac{dx}{dt} dtdx 与 d y d t \frac{dy}{dt} dtdy 间也存在一定关系,这两个相互依赖的变化率称为相关变化率.
- 相关变化率问题就是研究这两个变化率之间的关系,以便从其中一个变化率求出另一个变化率.
二、练习题
- 求由下列方程所确定的隐函数的导数 d y d x \frac{dy}{dx} dxdy:
-
(1) y 2 − 2 x y + 9 = 0 y^2-2xy+9=0 y2−2xy+9=0
2 y d y d x − 2 x d y d x − 2 y = 0 2y\frac{dy}{dx}-2x\frac{dy}{dx}-2y=0 2ydxdy−2xdxdy−2y=0
d y d x = y y − x \frac{dy}{dx}=\frac{y}{y-x} dxdy=y−xy
-
(2) x 3 + y 3 − 3 a x y = 0 x^3+y^3-3axy=0 x3+y3−3axy=0
3 x 2 + 3 y 2 d y d x − 3 a y − 3 a x d y d x = 0 3x^2+3y^2\frac{dy}{dx}-3ay-3ax\frac{dy}{dx}=0 3x2+3y2dxdy−3ay−3axdxdy=0
d y d x = a y − x 2 y 2 − a x \frac{dy}{dx}=\frac{ay-x^2}{y^2-ax} dxdy=y2−axay−x2
-
(3) x y = e x + y xy=e^{x+y} xy=ex+y
x d y d x + y = e x + y ( 1 + d y d x ) x\frac{dy}{dx}+y=e^{x+y}(1+\frac{dy}{dx}) xdxdy+y=ex+y(1+dxdy)
d y d x = e x + y − y x − e x + y \frac{dy}{dx}=\frac{e^{x+y}-y}{x-e^{x+y}} dxdy=x−ex+yex+y−y
-
(4) y = 1 − x e y y=1-xe^y y=1−xey
d y d x = − e y − x e y d y d x \frac{dy}{dx}=-e^y-xe^y\frac{dy}{dx} dxdy=−ey−xeydxdy
d y d x = − e y 1 + x e y \frac{dy}{dx}=-\frac{e^y}{1+xe^y} dxdy=−1+xeyey
- 求曲线 x 2 3 + y 2 3 = a 2 3 x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} x32+y32=a32 在点 ( 2 4 a , 2 4 a ) (\frac{\sqrt{2}}{4}a,\frac{\sqrt{2}}{4}a) (42a,42a) 处的切线方程和法线方程.
-
解:
2 3 x − 1 3 + 2 3 y − 1 3 d y d x = 0 \frac{2}{3}x^{-\frac{1}{3}}+\frac{2}{3}y^{-\frac{1}{3}}\frac{dy}{dx}=0 32x−31+32y−31dxdy=0
d y d x = − x − 1 3 y − 1 3 \frac{dy}{dx}=-\frac{x^{-\frac{1}{3}}}{y^{-\frac{1}{3}}} dxdy=−y−31x−31
点 ( 2 4 a , 2 4 a ) (\frac{\sqrt{2}}{4}a,\frac{\sqrt{2}}{4}a) (42a,42a) 的横纵坐标相等,所以此点处切线斜率为: − 1 -1 −1,法线斜率为:1.
切线方程为: y − 2 4 a = − x + 2 4 a y-\frac{\sqrt{2}}{4}a=-x+\frac{\sqrt{2}}{4}a y−42a=−x+42a,即 y = − x + 2 2 a y=-x+\frac{\sqrt{2}}{2}a y=−x+22a
法线方程为: y − 2 4 a = x − 2 4 a y-\frac{\sqrt{2}}{4}a=x-\frac{\sqrt{2}}{4}a y−42a=x−42a,即 y = x y=x y=x
- 求由下列方程所确定的隐函数的二阶导数 d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y:
-
解:
-
(1) x 2 − y 2 = 1 x^2-y^2=1 x2−y2=1
2 x − 2 y d y d x = 0 2x-2y\frac{dy}{dx}=0 2x−2ydxdy=0
d y d x = x y \frac{dy}{dx}=\frac{x}{y} dxdy=yx
d 2 y d x 2 = y − x d y d x y 2 \frac{d^2y}{dx^2}=\frac{y-x\frac{dy}{dx}}{y^2} dx2d2y=y2y−xdxdy
= y − x ⋅ x y y 2 =\frac{y-x\cdot \frac{x}{y}}{y^2} =y2y−x⋅yx
= y 2 − x 2 y 3 =\frac{y^2-x^2}{y^3} =y3y2−x2
= − y − 3 =-y^{-3} =−y−3
-
(2) b 2 x 2 + a 2 y 2 = a 2 b 2 b^2x^2+a^2y^2=a^2b^2 b2x2+a2y2=a2b2
b 2 ⋅ 2 x + a 2 ⋅ 2 y d y d x = 0 b^2\cdot 2x+a^2\cdot 2y\frac{dy}{dx}=0 b2⋅2x+a2⋅2ydxdy=0
d y d x = − x b 2 y a 2 \frac{dy}{dx}=-\frac{xb^2}{ya^2} dxdy=−ya2xb2
d 2 y d x 2 = − y a 2 b 2 − x b 2 a 2 d y d x y 2 a 4 \frac{d^2y}{dx^2}=-\frac{ya^2b^2-xb^2a^2\frac{dy}{dx}}{y^2a^4} dx2d2y=−y2a4ya2b2−xb2a2dxdy
= − a 2 b 2 y 2 + b 4 x 2 a 4 y 3 =-\frac{a^2b^2y^2+b^4x^2}{a^4y^3} =−a4y3a2b2y2+b4x2
= − b 2 ( a 2 y 2 + a 2 x 2 ) a 4 y 3 =-\frac{b^2(a^2y^2+a^2x^2)}{a^4y^3} =−a4y3b2(a2y2+a2x2)
= − a 2 b 4 a 4 y 3 =-\frac{a^2b^4}{a^4y^3} =−a4y3a2b4
= − b 4 a 2 y 3 =-\frac{b^4}{a^2y^3} =−a2y3b4
-
(3) y = t a n ( x + y ) y=tan(x+y) y=tan(x+y)
d y d x = s e c 2 ( x + y ) ( 1 + d y d x ) \frac{dy}{dx}=sec^2(x+y)(1+\frac{dy}{dx}) dxdy=sec2(x+y)(1+dxdy)
d y d x = s e c 2 x ( x + y ) 1 − s e c 2 ( x + y ) = − c s c 2 ( x + y ) \frac{dy}{dx}=\frac{sec^2x(x+y)}{1-sec^2(x+y)}=-csc^2(x+y) dxdy=1−sec2(x+y)sec2x(x+y)=−csc2(x+y)
d 2 y d x 2 = d [ − c s c 2 ( x + y ) ] d x \frac{d^2y}{dx^2}=\frac{d[-csc^2(x+y)]}{dx} dx2d2y=dxd[−csc2(x+y)]
= 2 s i n − 3 ( x + y ) c o s ( x + y ) ( 1 + d y d x ) =2sin^{-3}(x+y)cos(x+y)(1+\frac{dy}{dx}) =2sin−3(x+y)cos(x+y)(1+dxdy)
= 2 s i n − 3 ( x + y ) c o s ( x + y ) ( 1 − 1 c o s 2 ( x + y ) ) =2sin^{-3}(x+y)cos(x+y)(1-\frac{1}{cos^2(x+y)}) =2sin−3(x+y)cos(x+y)(1−cos2(x+y)1)
= − 2 c o s 3 ( x + y ) c s c 2 ( x + y ) =-2cos^3(x+y)csc^2(x+y) =−2cos3(x+y)csc2(x+y)
-
(4) y = 1 + x e y y=1+xe^y y=1+xey
d y d x = e y + x e y d y d x \frac{dy}{dx}=e^y+xe^y\frac{dy}{dx} dxdy=ey+xeydxdy
d y d x = e y 1 − x e y = e y 2 − y \frac{dy}{dx}=\frac{e^y}{1-xe^y}=\frac{e^y}{2-y} dxdy=1−xeyey=2−yey
d 2 y d x 2 = e y ( 2 − y ) d y d x + e y d y d x ( 2 − y ) 2 \frac{d^2y}{dx^2}=\frac{e^y(2-y)\frac{dy}{dx}+e^y\frac{dy}{dx}}{(2-y)^2} dx2d2y=(2−y)2ey(2−y)dxdy+eydxdy
= e y ( 3 − y ) ( 2 − y ) 2 ⋅ e y 2 − y =\frac{e^y(3-y)}{(2-y)^2}\cdot \frac{e^y}{2-y} =(2−y)2ey(3−y)⋅2−yey
= e 2 y ( 3 − y ) ( 2 − y ) 3 =\frac{e^{2y}(3-y)}{(2-y)^3} =(2−y)3e2y(3−y)
- 用对数求导法求下列函数的导数:
-
(1) y = ( x 1 + x ) x y=(\frac{x}{1+x})^x y=(1+xx)x
等号两边取对数得:
l n y = x l n x 1 + x lny=xln\frac{x}{1+x} lny=xln1+xx
1 y ⋅ y ′ = l n x 1 + x + x ⋅ 1 + x x ⋅ 1 + x − x ( 1 + x ) 2 \frac{1}{y}\cdot y'=ln\frac{x}{1+x}+x\cdot \frac{1+x}{x}\cdot \frac{1+x-x}{(1+x)^2} y1⋅y′=ln1+xx+x⋅x1+x⋅(1+x)21+x−x
y ′ = ( l n x 1 + x + 1 1 + x ) ⋅ ( x 1 + x ) x y'=(ln\frac{x}{1+x}+\frac{1}{1+x})\cdot (\frac{x}{1+x})^x y′=(ln1+xx+1+x1)⋅(1+xx)x
-
(2) y = x − 5 x 2 + 2 5 5 y=\sqrt[5]{\frac{x-5}{\sqrt[5]{x^2+2}}} y=55x2+2x−5
y = ( x − 5 ) 1 5 ( x 2 + 2 ) 1 25 y=\frac{(x-5)^{\frac{1}{5}}}{(x^2+2)^{\frac{1}{25}}} y=(x2+2)251(x−5)51
等号两边取对数,得:
l n y = 1 5 l n ( x − 5 ) − 1 25 l n ( x 2 + 2 ) lny=\frac{1}{5}ln(x-5)-\frac{1}{25}ln(x^2+2) lny=51ln(x−5)−251ln(x2+2)
y ′ y = 1 5 ( x − 5 ) − 2 x 25 ( x 2 + 2 ) = 3 x 2 + 10 x + 10 25 ( x − 5 ) ( x 2 + 2 ) \frac{y'}{y}=\frac{1}{5(x-5)}-\frac{2x}{25(x^2+2)}=\frac{3x^2+10x+10}{25(x-5)(x^2+2)} yy′=5(x−5)1−25(x2+2)2x=25(x−5)(x2+2)3x2+10x+10
y ′ = 3 x 2 + 10 x + 10 25 ( x − 5 ) ( x 2 + 2 ) ⋅ y y'=\frac{3x^2+10x+10}{25(x-5)(x^2+2)}\cdot y y′=25(x−5)(x2+2)3x2+10x+10⋅y
= 3 x 2 + 10 x + 10 25 ( x − 5 ) ( x 2 + 2 ) ⋅ ( x − 5 ) 1 5 ( x + 2 ) 1 25 =\frac{3x^2+10x+10}{25(x-5)(x^2+2)}\cdot \frac{(x-5)^{\frac{1}{5}}}{(x^+2)^{\frac{1}{25}}} =25(x−5)(x2+2)3x2+10x+10⋅(x+2)251(x−5)51
= 3 x 2 + 10 x + 10 25 ( x − 5 ) 4 5 ( x 2 + 2 ) 26 25 =\frac{3x^2+10x+10}{25(x-5)^{\frac{4}{5}}(x^2+2)^{\frac{26}{25}}} =25(x−5)54(x2+2)25263x2+10x+10
-
(3) y = x + 2 ( 3 − x ) 4 ( x + 1 ) 5 y=\frac{\sqrt{x+2}(3-x)^4}{(x+1)^5} y=(x+1)5x+2(3−x)4
等号两边取对数得:
l n y = 1 2 l n ( x + 2 ) + 4 l n ( 3 − x ) − 5 l n ( x + 1 ) lny=\frac{1}{2}ln(x+2)+4ln(3-x)-5ln(x+1) lny=21ln(x+2)+4ln(3−x)−5ln(x+1)
y ′ y = 1 2 ( x + 2 ) + 4 x − 3 − 5 x + 1 \frac{y'}{y}=\frac{1}{2(x+2)}+\frac{4}{x-3}-\frac{5}{x+1} yy′=2(x+2)1+x−34−x+15
y ′ = [ 1 2 ( x + 2 ) + 4 x − 3 − 5 x + 1 ] ⋅ x + 2 ( 3 − x ) 4 ( x + 1 ) 5 y'=[\frac{1}{2(x+2)}+\frac{4}{x-3}-\frac{5}{x+1}]\cdot \frac{\sqrt{x+2}(3-x)^4}{(x+1)^5} y′=[2(x+2)1+x−34−x+15]⋅(x+1)5x+2(3−x)4
-
(4) y = x s i n x 1 − e x y=\sqrt{xsinx\sqrt{1-e^x}} y=xsinx1−ex
∵ 1 − e x ≥ 0 \because 1-e^x\geq 0 ∵1−ex≥0
∴ x ≤ 0 \therefore x\leq 0 ∴x≤0
∵ x s i n x ≥ 0 \because xsinx\geq 0 ∵xsinx≥0
∴ s i n ≤ 0 \therefore sin \leq 0 ∴sin≤0
∴ l n y = 1 2 [ l n ( − x ) + l n ( − s i n x ) + 1 2 l n ( 1 − e x ) ] \therefore lny=\frac{1}{2}[ln(-x)+ln(-sinx)+\frac{1}{2}ln(1-e^x)] ∴lny=21[ln(−x)+ln(−sinx)+21ln(1−ex)]
∴ y ′ = [ 1 2 x + c o t x 2 − e x 4 ( 1 − e x ) ] ⋅ x s i n x 1 − e x \therefore y'=[\frac{1}{2x}+\frac{cotx}{2}-\frac{e^x}{4(1-e^x)}]\cdot \sqrt{xsinx\sqrt{1-e^x}} ∴y′=[2x1+2cotx−4(1−ex)ex]⋅xsinx1−ex
-
求下列参数方程所确定的函数的导数 d y d x \frac{dy}{dx} dxdy:
(1) { x = a t 2 y = b t 3 \begin{cases}x=at^2\\y=bt^3\end{cases} {x=at2y=bt3
(2) { x = θ ( 1 − s i n θ ) y = θ c o s θ \begin{cases}x=\theta (1-sin\theta)\\y=\theta cos\theta \end{cases} {x=θ(1−sinθ)y=θcosθ
-
解:
-
(1)
d y d x = d y d t d x d t \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} dxdy=dtdxdtdy
= 3 b t 2 2 a t = 3 b t 2 a =\frac{3bt^2}{2at}=\frac{3bt}{2a} =2at3bt2=2a3bt
-
(2)
d y d x = d y d θ d x d θ \frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} dxdy=dθdxdθdy
= c o s θ − θ s i n θ 1 − s i n θ + θ c o s θ =\frac{cos\theta -\theta sin\theta}{1-sin\theta+\theta cos\theta} =1−sinθ+θcosθcosθ−θsinθ
- 已知 { x = e t s i n t y = e t c o s t \begin{cases}x=e^tsint \\ y=e^tcost\end{cases} {x=etsinty=etcost 求当 t = π 3 t=\frac{\pi}{3} t=3π 时 d y d x \frac{dy}{dx} dxdy 的值.
-
解:
d y d x = d y d t d x d t \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} dxdy=dtdxdtdy
= e t c o s t − e t s i n t e t s i n t + e t c o s t =\frac{e^tcost-e^tsint}{e^tsint+e^tcost} =etsint+etcostetcost−etsint
= c o s t − s i n t s i n t + c o s t =\frac{cost-sint}{sint+cost} =sint+costcost−sint
d y d x ∣ t = π 3 = c o s π 3 − s i n π 3 s i n π 3 + c o s π 3 \frac{dy}{dx}|_{t=\frac{\pi}{3}}=\frac{cos\frac{\pi}{3}-sin\frac{\pi}{3}}{sin\frac{\pi}{3}+cos\frac{\pi}{3}} dxdy∣t=3π=sin3π+cos3πcos3π−sin3π
= 1 2 − 3 2 3 2 + 1 2 =\frac{\frac{1}{2}-\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}+\frac{1}{2}} =23+2121−23
= 1 − 3 3 + 1 =\frac{1-\sqrt{3}}{\sqrt{3}+1} =3+11−3
-
写出下列曲线在所给参数值相应的点处的切线方程和法线方程:
(1) { x = s i n t y = c o s 2 t \begin{cases}x=sint\\y=cos2t\end{cases} {x=sinty=cos2t 在 t = π 4 t=\frac{\pi}{4} t=4π 处
(2) { x = 3 a t 1 + t 2 y = 3 a t 2 1 + t 2 \begin{cases}x=\frac{3at}{1+t^2}\\y=\frac{3at^2}{1+t^2}\end{cases} {x=1+t23aty=1+t23at2 在 t = 2 t=2 t=2 处.
-
解:
-
(1)
t = π 4 t=\frac{\pi}{4} t=4π 时的点位坐标: ( 2 2 , 0 ) (\frac{\sqrt{2}}{2},0) (22,0)
此处切线的斜率: d y d x ∣ t = π 4 = − 2 s i n 2 t c o s t ∣ t = π 4 = − 2 2 \frac{dy}{dx}|_{t=\frac{\pi}{4}}=\frac{-2sin2t}{cost}|_{t=\frac{\pi}{4}}=-2\sqrt{2} dxdy∣t=4π=cost−2sin2t∣t=4π=−22
此处法线的斜率: − 1 − 2 2 = 2 4 \frac{-1}{-2\sqrt{2}}=\frac{\sqrt{2}}{4} −22−1=42
切线方程为: y = − 2 2 ( x − 2 2 ) y=-2\sqrt{2}(x-\frac{\sqrt{2}}{2}) y=−22(x−22)
法线方程为: y = 2 4 ( x − 2 2 ) y=\frac{\sqrt{2}}{4}(x-\frac{\sqrt{2}}{2}) y=42(x−22)
-
(2)
t = 2 t=2 t=2 时的点位坐标 ( 6 a 5 , 12 a 5 ) (\frac{6a}{5},\frac{12a}{5}) (56a,512a)
d x d t = 3 a ( 1 + t 2 ) − 3 a t ⋅ 2 t ( 1 + t 2 ) 2 = 3 a − 3 a t 2 ( 1 + t 2 ) 2 \frac{dx}{dt}=\frac{3a(1+t^2)-3at\cdot 2t}{(1+t^2)^2}=\frac{3a-3at^2}{(1+t^2)^2} dtdx=(1+t2)23a(1+t2)−3at⋅2t=(1+t2)23a−3at2
d y d t = 6 a t ( 1 + t 2 ) − 3 a t 2 ⋅ 2 t ( 1 + t 2 ) 2 = 6 a t ( 1 + t 2 ) 2 \frac{dy}{dt}=\frac{6at(1+t^2)-3at^2\cdot 2t}{(1+t^2)^2}=\frac{6at}{(1+t^2)^2} dtdy=(1+t2)26at(1+t2)−3at2⋅2t=(1+t2)26at
d y d x = d y d t d x d t \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} dxdy=dtdxdtdy
= 6 a t ( 1 + t 2 ) 2 ⋅ ( 1 + t 2 ) 2 3 a − 3 a t 2 =\frac{6at}{(1+t^2)^2}\cdot \frac{(1+t^2)^2}{3a-3at^2} =(1+t2)26at⋅3a−3at2(1+t2)2
= 2 t 1 − t 2 =\frac{2t}{1-t^2} =1−t22t
t = 2 t=2 t=2 时曲线切线的斜率为: d y d x ∣ t = 2 = 2 t 1 − t 2 ∣ t = 2 = − 4 3 \frac{dy}{dx}|_{t=2}=\frac{2t}{1-t^2}|_{t=2}=-\frac{4}{3} dxdy∣t=2=1−t22t∣t=2=−34
切线方程为: y − 12 a 5 = − 4 3 ( x − 6 a 5 ) y-\frac{12a}{5}=-\frac{4}{3}(x-\frac{6a}{5}) y−512a=−34(x−56a)
t = 2 t=2 t=2 时曲线法线的斜率为: − 1 − 4 3 = 3 4 \frac{-1}{-\frac{4}{3}}=\frac{3}{4} −34−1=43
法线方程为: y − 12 5 = 3 4 ( x − 6 a 5 ) y-\frac{12}{5}=\frac{3}{4}(x-\frac{6a}{5}) y−512=43(x−56a)
-
求下列参数方程所确定的函数的二阶导数 d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y:
(1) { x = t 2 2 y = 1 − t \begin{cases}x=\frac{t^2}{2}\\y=1-t\end{cases} {x=2t2y=1−t
(2) { x = a c o s t y = b s i n t \begin{cases}x=acost\\y=bsint\end{cases} {x=acosty=bsint
(3) { x = 3 e − t y = 2 e − t \begin{cases}x=3e^{-t}\\y=2e^{-t}\end{cases} {x=3e−ty=2e−t
(4) { x = f ′ ( t ) y = t f ′ ( t ) − f ( t ) \begin{cases}x=f'(t)\\y=tf'(t)-f(t)\end{cases} {x=f′(t)y=tf′(t)−f(t) 设 f ′ ′ ( t ) f''(t) f′′(t) 存在且不为零
-
解:
-
(1)
d x d t = t \frac{dx}{dt}=t dtdx=t
d y d t = − 1 \frac{dy}{dt}=-1 dtdy=−1
d y d x = − 1 t \frac{dy}{dx}=-\frac{1}{t} dxdy=−t1
d 2 y d x 2 = d ( d y d x ) d x \frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx} dx2d2y=dxd(dxdy)
= d ( − 1 t ) d t ⋅ d t d x =\frac{d(-\frac{1}{t})}{dt}\cdot \frac{dt}{dx} =dtd(−t1)⋅dxdt
= − 1 t 2 ⋅ 1 t = 1 t 3 =-\frac{1}{t^2}\cdot \frac{1}{t}=\frac{1}{t^3} =−t21⋅t1=t31
-
(2)
d x d t = − a s i n t \frac{dx}{dt}=-asint dtdx=−asint
d y d t = b c o s t \frac{dy}{dt}=bcost dtdy=bcost
d y d x = − b c o s t a s i n t \frac{dy}{dx}=-\frac{bcost}{asint} dxdy=−asintbcost
d 2 y d x 2 = d ( d y d x ) d t ⋅ d t d x \frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dt}\cdot \frac{dt}{dx} dx2d2y=dtd(dxdy)⋅dxdt
= ( − b c o s t a s i n t ) ′ ⋅ 1 − a s i n t =(-\frac{bcost}{asint})'\cdot \frac{1}{-asint} =(−asintbcost)′⋅−asint1
= − b s i n t ⋅ a s i n t − b c o s t ⋅ a c o s t a 2 s i n 2 t ⋅ 1 a s i n t =\frac{-bsint\cdot asint-bcost\cdot acost}{a^2sin^2t}\cdot \frac{1}{asint} =a2sin2t−bsint⋅asint−bcost⋅acost⋅asint1
= − b a 2 s i n 2 t =\frac{-b}{a^2sin^2t} =a2sin2t−b
-
(3)
d x d t = − 3 e − t \frac{dx}{dt}=-3e^{-t} dtdx=−3e−t
d y d t = 2 e t \frac{dy}{dt}=2e^t dtdy=2et
d y d x = 2 e t − 3 e − t = − 2 3 e 2 t \frac{dy}{dx}=\frac{2e^t}{-3e^{-t}}=-\frac{2}{3}e^{2t} dxdy=−3e−t2et=−32e2t
d 2 y d x 2 = ( − 2 3 e 2 t ) ′ ⋅ 1 − 3 e − t \frac{d^2y}{dx^2}=(-\frac{2}{3}e^{2t})'\cdot \frac{1}{-3e^{-t}} dx2d2y=(−32e2t)′⋅−3e−t1
= − 2 3 e 2 t ⋅ 2 ⋅ 1 − 3 e − t =-\frac{2}{3}e^{2t}\cdot 2 \cdot \frac{1}{-3e^{-t}} =−32e2t⋅2⋅−3e−t1
= 4 9 e 3 t =\frac{4}{9}e^{3t} =94e3t
-
(4)
d x d t = f ′ ′ ( t ) \frac{dx}{dt}=f''(t) dtdx=f′′(t)
d y d t = f ′ ( t ) + t f ′ ′ ( t ) − f ′ ( t ) = t f ′ ′ ( t ) \frac{dy}{dt}=f'(t)+tf''(t)-f'(t)=tf''(t) dtdy=f′(t)+tf′′(t)−f′(t)=tf′′(t)
d y d x = t f ′ ′ ( t ) f ′ ′ ( t ) = t \frac{dy}{dx}=\frac{tf''(t)}{f''(t)}=t dxdy=f′′(t)tf′′(t)=t
d 2 y d x 2 = d ( d y d x ) d t ⋅ d t d x \frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dt}\cdot \frac{dt}{dx} dx2d2y=dtd(dxdy)⋅dxdt
= 1 ⋅ 1 f ′ ′ ( t ) = 1 f ′ ′ ( t ) =1\cdot \frac{1}{f''(t)}= \frac{1}{f''(t)} =1⋅f′′(t)1=f′′(t)1
- 求下列参数方程所确定的函数的三阶导数
d
3
y
d
x
3
\frac{d^3y}{dx^3}
dx3d3y:
(1) { x = 1 − t 2 y = t − t 3 \begin{cases}x=1-t^2\\y=t-t^3\end{cases} {x=1−t2y=t−t3
(2) { x = l n ( 1 + t 2 ) y = t − a r c t a n t \begin{cases}x=ln(1+t^2)\\y=t-arctant\end{cases} {x=ln(1+t2)y=t−arctant
- 解:
- (1)
d x d t = − 2 t \frac{dx}{dt}=-2t dtdx=−2t
d y d t = 1 − 3 t 2 \frac{dy}{dt}=1-3t^2 dtdy=1−3t2
d y d t = d y d t d x d t = 1 − 3 t 2 − 2 t = 3 t 2 − 1 2 t \frac{dy}{dt}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{1-3t^2}{-2t}=\frac{3t^2-1}{2t} dtdy=dtdxdtdy=−2t1−3t2=2t3t2−1
d 2 y d x 2 = d ( d y d x ) d t ⋅ d t d x = ( 3 t 2 − 1 2 t ) ′ ⋅ 1 − 2 t = 3 t 2 + 1 − 4 t 3 \frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dt}\cdot \frac{dt}{dx}=(\frac{3t^2-1}{2t})'\cdot \frac{1}{-2t}=\frac{3t^2+1}{-4t^3} dx2d2y=dtd(dxdy)⋅dxdt=(2t3t2−1)′⋅−2t1=−4t33t2+1
d 3 y d x 3 = d ( d 2 y d x 2 ) d t ⋅ d t d x = ( 3 t 2 + 1 − 4 t 3 ) ′ ⋅ 1 − 2 t = − 3 ( t 2 + 1 ) 8 t 5 \frac{d^3y}{dx^3}=\frac{d(\frac{d^2y}{dx^2})}{dt}\cdot \frac{dt}{dx}=(\frac{3t^2+1}{-4t^3})'\cdot \frac{1}{-2t}=-\frac{3(t^2+1)}{8t^5} dx3d3y=dtd(dx2d2y)⋅dxdt=(−4t33t2+1)′⋅−2t1=−8t53(t2+1) - (2)
d x d t = 2 t 1 + t 2 \frac{dx}{dt}=\frac{2t}{1+t^2} dtdx=1+t22t
d y d t = t 2 1 + t 2 \frac{dy}{dt}=\frac{t^2}{1+t^2} dtdy=1+t2t2
d y d x = d y d t d x d t = t 2 1 + t 2 2 t 1 + t 2 = t 2 \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\frac{t^2}{1+t^2}}{\frac{2t}{1+t^2}}=\frac{t}{2} dxdy=dtdxdtdy=1+t22t1+t2t2=2t
d 2 y d x 2 = d ( d y d x ) d t ⋅ d t d x = ( t 2 ) ′ ⋅ 1 + t 2 2 t = 1 + t 2 4 t \frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dt}\cdot \frac{dt}{dx}=(\frac{t}{2})'\cdot \frac{1+t^2}{2t}=\frac{1+t^2}{4t} dx2d2y=dtd(dxdy)⋅dxdt=(2t)′⋅2t1+t2=4t1+t2
d 3 y d x 3 = d ( d 2 y d x 2 ) d t ⋅ d t d x = ( 1 + t 2 4 t ) ′ ⋅ 1 + t 2 2 t = t 4 − 1 8 t 3 \frac{d^3y}{dx^3}=\frac{d(\frac{d^2y}{dx^2})}{dt}\cdot \frac{dt}{dx}=(\frac{1+t^2}{4t})'\cdot \frac{1+t^2}{2t}=\frac{t^4-1}{8t^3} dx3d3y=dtd(dx2d2y)⋅dxdt=(4t1+t2)′⋅2t1+t2=8t3t4−1
- 落在平静水面上的石头,产生同心波纹。若最外一圈波半径的增大速度总是 6 m / s 6m/s 6m/s,问在 2 s 2s 2s 末扰动水面面积增大的速率为多少?
- 解:
圆的面积公式为: s = π r 2 s=\pi r^2 s=πr2
面积变化的速率为: d s d t = 2 π r d r d t \frac{ds}{dt}=2\pi r\frac{dr}{dt} dtds=2πrdtdr
根据题意, r = 6 ⋅ 2 = 12 ( m ) r=6\cdot 2=12 (m) r=6⋅2=12(m), d r d t = 6 ( m / s ) \frac{dr}{dt}=6(m/s) dtdr=6(m/s)
∴ 2 s \therefore 2s ∴2s 末扰动水面面积增大的速率为 2 ⋅ π ⋅ 12 ⋅ 6 = 144 π ( m 2 / s ) 2\cdot \pi \cdot 12 \cdot 6=144\pi (m^2/s) 2⋅π⋅12⋅6=144π(m2/s)
- 注水入深 8 m 8m 8m 上顶直径 8 m 8m 8m 的正圆锥形容器中,其速率为 4 m 3 / m i n 4m^3/min 4m3/min. 当水深为 5 m 5m 5m 时,其表面上升的速率为多少?
- 解:
正圆锥容器中水的体的计算公式为: v = 1 3 π r 2 h v=\frac{1}{3}\pi r^2 h v=31πr2h
根据题意,水的上表面半径与水深的比值为: r h = 4 8 \frac{r}{h}=\frac{4}{8} hr=84
可得: r = h 2 r=\frac{h}{2} r=2h
水的体积计算公式变换为: v = π h 3 12 v=\frac{\pi h^3}{12} v=12πh3
对 t t t 求导得: d v d t = π h 2 4 ⋅ d h d t \frac{dv}{dt}=\frac{\pi h^2}{4}\cdot \frac{dh}{dt} dtdv=4πh2⋅dtdh
根据题意, d v d t = 4 ( m 3 / m i n ) \frac{dv}{dt}=4(m^3/min) dtdv=4(m3/min), h = 5 ( m ) h=5(m) h=5(m)
可得: d h d t = 16 25 π ( m / m i n ) \frac{dh}{dt}=\frac{16}{25\pi}(m/min) dtdh=25π16(m/min)
- 溶液自深 18 c m 18cm 18cm 顶直径 12 c m 12cm 12cm 的正圆锥形漏斗中漏入一直径为 10 c m 10cm 10cm 的圆柱形筒中.开始时漏洞中盛满了溶液,已知当溶液在漏斗中深为 12 c m 12cm 12cm 时,其表面下降的速率为 1 c m / m i n 1cm/min 1cm/min. 问此时圆柱形筒中溶液表面上升的速率为多少?
- 解:
(1) 对于正圆锥形漏斗中的溶液:
设 v 1 v_1 v1 表示体积, r 1 r_1 r1 表示上表面半径, h 1 h_1 h1 表示深度.
根据相似关系,有: r 1 h 1 = 6 18 = 1 3 \frac{r_1}{h_1}=\frac{6}{18}=\frac{1}{3} h1r1=186=31,可得 r 1 = 1 3 h 1 r_1=\frac{1}{3}h_1 r1=31h1.
∴ v 1 = 1 3 π r 1 2 h = π h 1 3 27 \therefore v_1=\frac{1}{3}\pi r_1^2h=\frac{\pi h_1^3}{27} ∴v1=31πr12h=27πh13
溶液体积的变化速率为: d v 1 d t = π h 1 2 9 ⋅ d h 1 d t \frac{dv_1}{dt}=\frac{\pi h_1^2}{9}\cdot \frac{dh_1}{dt} dtdv1=9πh12⋅dtdh1
(2) 对于圆柱形筒中的溶液:
设 v 2 v_2 v2 表示体积, r 2 r_2 r2 表示上表面半径,$ h 2 h_2 h2 表示深度.
有 v 2 = π r 2 2 h 2 = 25 π h 2 v_2=\pi r_2^2 h_2=25\pi h_2 v2=πr22h2=25πh2
溶液体积变化速率为: d v 2 d t = 25 π d h 2 d t \frac{dv_2}{dt}=25\pi \frac{dh_2}{dt} dtdv2=25πdtdh2
(3) 联合考虑
∵ \because ∵ 两容器中溶液体积的变化率相等
∴ π h 1 2 9 ⋅ d h 1 d t = 25 π d h 2 d t \therefore \frac{\pi h_1^2}{9}\cdot \frac{dh_1}{dt}=25\pi \frac{dh_2}{dt} ∴9πh12⋅dtdh1=25πdtdh2
带入题目给出的已知量,得: 1 2 2 π 9 ⋅ 1 = 25 π d h 2 d t \frac{12^2\pi}{9}\cdot 1=25\pi \frac{dh_2}{dt} 9122π⋅1=25πdtdh2
∴ d h 2 d t = 16 25 ( c m / m i n ) \therefore \frac{dh_2}{dt}=\frac{16}{25}(cm/min) ∴dtdh2=2516(cm/min)
- 学习资料
1.《高等数学(第六版)》 上册,同济大学数学系 编
- 感谢您的关注,更欢迎您的批评和指正!
原文地址:https://blog.csdn.net/qq_26390449/article/details/143923662
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!