动手学深度学习d2l包M4芯片 gpu加速
conda创建环境
CONDA_SUBDIR=osx-arm64 conda create -n ml python=3.9 -c conda-forge
conda env config vars set CONDA_SUBDIR=osx-arm64
conda activate ml
pip安装包
pip install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install transformers datasets
pip install matplotlib
下载del源文件
del链接
放到本地项目内
修改del下的torch.py的两个函数内容
# 修改try gpu函数
def try_gpu(i=0):
"""Return gpu(i) if exists, otherwise return cpu().
Defined in :numref:`sec_use_gpu`"""
if torch.cuda.device_count() >= i + 1:
return torch.device(f'cuda:{i}')
try:
return torch.device('mps')
except:
return torch.device('cpu')
# 修改try gpu函数
def try_all_gpus():
"""Return all available GPUs, or [cpu(),] if no GPU exists.
Defined in :numref:`sec_use_gpu`"""
devices = [torch.device(f'cuda:{i}')
for i in range(torch.cuda.device_count())]
try:
device_macos = torch.device('mps')
except:
device_macos = torch.device('cpu')
return devices if devices else [device_macos]
测试
运行lenet.ipynb测试效果
速度还可以。
还不懂的可以看M1版本的教程
原文地址:https://blog.csdn.net/while_BLUE_/article/details/144300916
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!