自学内容网 自学内容网

《深入理解Mybatis原理》Mybatis中的缓存实现原理

一级缓存实现

什么是一级缓存? 为什么使用一级缓存?

每当我们使用MyBatis开启一次和数据库的会话,MyBatis会创建出一个SqlSession对象表示一次数据库会话。

在对数据库的一次会话中,我们有可能会反复地执行完全相同的查询语句,如果不采取一些措施的话,每一次查询都会查询一次数据库,而我们在极短的时间内做了完全相同的查询,那么它们的结果极有可能完全相同,由于查询一次数据库的代价很大,这有可能造成很大的资源浪费。

为了解决这一问题,减少资源的浪费,MyBatis会在表示会话的SqlSession对象中建立一个简单的缓存,将每次查询到的结果结果缓存起来,当下次查询的时候,如果判断先前有个完全一样的查询,会直接从缓存中直接将结果取出,返回给用户,不需要再进行一次数据库查询了。

如下图所示,MyBatis一次会话: 一个SqlSession对象中创建一个本地缓存(local cache),对于每一次查询,都会尝试根据查询的条件去本地缓存中查找是否在缓存中,如果在缓存中,就直接从缓存中取出,然后返回给用户;否则,从数据库读取数据,将查询结果存入缓存并返回给用户。

对于会话(Session)级别的数据缓存,我们称之为一级数据缓存,简称一级缓存。

MyBatis中的一级缓存是怎样组织的?

即SqlSession中的缓存是怎样组织的?由于MyBatis使用SqlSession对象表示一次数据库的会话,那么,对于会话级别的一级缓存也应该是在SqlSession中控制的。

实际上, MyBatis只是一个MyBatis对外的接口,SqlSession将它的工作交给了Executor执行器这个角色来完成,负责完成对数据库的各种操作。当创建了一个SqlSession对象时,MyBatis会为这个SqlSession对象创建一个新的Executor执行器,而缓存信息就被维护在这个Executor执行器中,MyBatis将缓存和对缓存相关的操作封装成了Cache接口中。SqlSession、Executor、Cache之间的关系如下列类图所示:

如上述的类图所示,Executor接口的实现类BaseExecutor中拥有一个Cache接口的实现类PerpetualCache,则对于BaseExecutor对象而言,它将使用PerpetualCache对象维护缓存。

综上,SqlSession对象、Executor对象、Cache对象之间的关系如下图所示:

由于Session级别的一级缓存实际上就是使用PerpetualCache维护的,那么PerpetualCache是怎样实现的呢?

PerpetualCache实现原理其实很简单,其内部就是通过一个简单的HashMap<k,v> 来实现的,没有其他的任何限制。如下是PerpetualCache的实现代码:

package org.apache.ibatis.cache.impl;  
  
import java.util.HashMap;  
import java.util.Map;  
import java.util.concurrent.locks.ReadWriteLock;  
  
import org.apache.ibatis.cache.Cache;  
import org.apache.ibatis.cache.CacheException;  
  
/** 
 * 使用简单的HashMap来维护缓存 
 * @author Clinton Begin 
 */  
public class PerpetualCache implements Cache {  
  
  private String id;  
  
  private Map<Object, Object> cache = new HashMap<Object, Object>();  
  
  public PerpetualCache(String id) {  
    this.id = id;  
  }  
  
  public String getId() {  
    return id;  
  }  
  
  public int getSize() {  
    return cache.size();  
  }  
  
  public void putObject(Object key, Object value) {  
    cache.put(key, value);  
  }  
  
  public Object getObject(Object key) {  
    return cache.get(key);  
  }  
  
  public Object removeObject(Object key) {  
    return cache.remove(key);  
  }  
  
  public void clear() {  
    cache.clear();  
  }  
  
  public ReadWriteLock getReadWriteLock() {  
    return null;  
  }  
  
  public boolean equals(Object o) {  
    if (getId() == null) throw new CacheException("Cache instances require an ID.");  
    if (this == o) return true;  
    if (!(o instanceof Cache)) return false;  
  
    Cache otherCache = (Cache) o;  
    return getId().equals(otherCache.getId());  
  }  
  
  public int hashCode() {  
    if (getId() == null) throw new CacheException("Cache instances require an ID.");  
    return getId().hashCode();  
  }  
  
} 

一级缓存的生命周期有多长?

MyBatis在开启一个数据库会话时,会创建一个新的SqlSession对象,SqlSession对象中会有一个新的Executor对象,Executor对象中持有一个新的PerpetualCache对象;当会话结束时,SqlSession对象及其内部的Executor对象还有PerpetualCache对象也一并释放掉。

  • 如果SqlSession调用了close()方法,会释放掉一级缓存PerpetualCache对象,一级缓存将不可用;

  • 如果SqlSession调用了clearCache(),会清空PerpetualCache对象中的数据,但是该对象仍可使用;

  • SqlSession中执行了任何一个update操作(update()、delete()、insert()) ,都会清空PerpetualCache对象的数据,但是该对象可以继续使用;

SqlSession 一级缓存的工作流程

  • 对于某个查询,根据statementId,params,rowBounds来构建一个key值,根据这个key值去缓存Cache中取出对应的key值存储的缓存结果;

  • 判断从Cache中根据特定的key值取的数据数据是否为空,即是否命中;

  • 如果命中,则直接将缓存结果返回;

  • 如果没命中:去数据库中查询数据,得到查询结果;将key和查询到的结果分别作为key,value对存储到Cache中;将查询结果返回;

  • 结束。

Cache接口的设计以及CacheKey的定义

如下图所示,MyBatis定义了一个org.apache.ibatis.cache.Cache接口作为其Cache提供者的SPI(Service Provider Interface) ,所有的MyBatis内部的Cache缓存,都应该实现这一接口。MyBatis定义了一个PerpetualCache实现类实现了Cache接口,实际上,在SqlSession对象里的Executor对象内维护的Cache类型实例对象,就是PerpetualCache子类创建的。

(MyBatis内部还有很多Cache接口的实现,一级缓存只会涉及到这一个PerpetualCache子类,Cache的其他实现将会放到二级缓存中介绍)。

我们知道,Cache最核心的实现其实就是一个Map,将本次查询使用的特征值作为key,将查询结果作为value存储到Map中。现在最核心的问题出现了:怎样来确定一次查询的特征值?换句话说就是:怎样判断某两次查询是完全相同的查询?也可以这样说:如何确定Cache中的key值?

MyBatis认为,对于两次查询,如果以下条件都完全一样,那么就认为它们是完全相同的两次查询:

  • 传入的 statementId

  • 查询时要求的结果集中的结果范围 (结果的范围通过rowBounds.offset和rowBounds.limit表示)

  • 这次查询所产生的最终要传递给JDBC java.sql.Preparedstatement的Sql语句字符串(boundSql.getSql() )

  • 传递给java.sql.Statement要设置的参数值

现在分别解释上述四个条件

  • 传入的statementId,对于MyBatis而言,你要使用它,必须需要一个statementId,它代表着你将执行什么样的Sql;

  • MyBatis自身提供的分页功能是通过RowBounds来实现的,它通过rowBounds.offset和rowBounds.limit来过滤查询出来的结果集,这种分页功能是基于查询结果的再过滤,而不是进行数据库的物理分页;

  • 由于MyBatis底层还是依赖于JDBC实现的,那么,对于两次完全一模一样的查询,MyBatis要保证对于底层JDBC而言,也是完全一致的查询才行。而对于JDBC而言,两次查询,只要传入给JDBC的SQL语句完全一致,传入的参数也完全一致,就认为是两次查询是完全一致的。

  • 上述的第3个条件正是要求保证传递给JDBC的SQL语句完全一致;第4条则是保证传递给JDBC的参数也完全一致;即3、4两条MyBatis最本质的要求就是:调用JDBC的时候,传入的SQL语句要完全相同,传递给JDBC的参数值也要完全相同。

综上所述,CacheKey由以下条件决定:statementId + rowBounds + 传递给JDBC的SQL + 传递给JDBC的参数值

  • CacheKey的创建

对于每次的查询请求,Executor都会根据传递的参数信息以及动态生成的SQL语句,将上面的条件根据一定的计算规则,创建一个对应的CacheKey对象。

我们知道创建CacheKey的目的,就两个:

  • 根据CacheKey作为key,去Cache缓存中查找缓存结果;

  • 如果查找缓存命中失败,则通过此CacheKey作为key,将从数据库查询到的结果作为value,组成key,value对存储到Cache缓存中;

CacheKey的构建被放置到了Executor接口的实现类BaseExecutor中,定义如下:

/** 
 * 所属类:  org.apache.ibatis.executor.BaseExecutor 
 * 功能   :   根据传入信息构建CacheKey 
 */  
public CacheKey createCacheKey(MappedStatement ms, Object parameterObject, RowBounds rowBounds, BoundSql boundSql) {  
    if (closed) throw new ExecutorException("Executor was closed.");  
    CacheKey cacheKey = new CacheKey();  
    //1.statementId  
    cacheKey.update(ms.getId());  
    //2. rowBounds.offset  
    cacheKey.update(rowBounds.getOffset());  
    //3. rowBounds.limit  
    cacheKey.update(rowBounds.getLimit());  
    //4. SQL语句  
    cacheKey.update(boundSql.getSql());  
    //5. 将每一个要传递给JDBC的参数值也更新到CacheKey中  
    List<ParameterMapping> parameterMappings = boundSql.getParameterMappings();  
    TypeHandlerRegistry typeHandlerRegistry = ms.getConfiguration().getTypeHandlerRegistry();  
    for (int i = 0; i < parameterMappings.size(); i++) { // mimic DefaultParameterHandler logic  
        ParameterMapping parameterMapping = parameterMappings.get(i);  
        if (parameterMapping.getMode() != ParameterMode.OUT) {  
            Object value;  
            String propertyName = parameterMapping.getProperty();  
            if (boundSql.hasAdditionalParameter(propertyName)) {  
                value = boundSql.getAdditionalParameter(propertyName);  
            } else if (parameterObject == null) {  
                value = null;  
            } else if (typeHandlerRegistry.hasTypeHandler(parameterObject.getClass())) {  
                value = parameterObject;  
            } else {  
                MetaObject metaObject = configuration.newMetaObject(parameterObject);  
                value = metaObject.getValue(propertyName);  
            }  
            //将每一个要传递给JDBC的参数值也更新到CacheKey中  
            cacheKey.update(value);  
        }  
    }  
    return cacheKey;  
}

  • CacheKey的hashcode生成算法

刚才已经提到,Cache接口的实现,本质上是使用的HashMap<k,v>,而构建CacheKey的目的就是为了作为HashMap<k,v>中的key值。而HashMap是通过key值的hashcode 来组织和存储的,那么,构建CacheKey的过程实际上就是构造其hashCode的过程。下面的代码就是CacheKey的核心hashcode生成算法,感兴趣的话可以看一下:

public void update(Object object) {  
    if (object != null && object.getClass().isArray()) {  
        int length = Array.getLength(object);  
        for (int i = 0; i < length; i++) {  
            Object element = Array.get(object, i);  
            doUpdate(element);  
        }  
    } else {  
        doUpdate(object);  
    }  
}  
 
private void doUpdate(Object object) {  
 
    //1. 得到对象的hashcode;    
    int baseHashCode = object == null ? 1 : object.hashCode();  
    //对象计数递增  
    count++;  
    checksum += baseHashCode;  
    //2. 对象的hashcode 扩大count倍  
    baseHashCode *= count;  
    //3. hashCode * 拓展因子(默认37)+拓展扩大后的对象hashCode值  
    hashcode = multiplier * hashcode + baseHashCode;  
    updateList.add(object);  
} 

MyBatis认为的完全相同的查询,不是指使用sqlSession查询时传递给算起来Session的所有参数值完完全全相同,你只要保证statementId,rowBounds,最后生成的SQL语句,以及这个SQL语句所需要的参数完全一致就可以了。

一级缓存的性能分析

  • MyBatis对会话(Session)级别的一级缓存设计的比较简单,就简单地使用了HashMap来维护,并没有对HashMap的容量和大小进行限制

读者有可能就觉得不妥了:如果我一直使用某一个SqlSession对象查询数据,这样会不会导致HashMap太大,而导致 java.lang.OutOfMemoryError错误啊? 读者这么考虑也不无道理,不过MyBatis的确是这样设计的。

MyBatis这样设计也有它自己的理由:

  • 一般而言SqlSession的生存时间很短。一般情况下使用一个SqlSession对象执行的操作不会太多,执行完就会消亡;

  • 对于某一个SqlSession对象而言,只要执行update操作(update、insert、delete),都会将这个SqlSession对象中对应的一级缓存清空掉,所以一般情况下不会出现缓存过大,影响JVM内存空间的问题;

  • 可以手动地释放掉SqlSession对象中的缓存。

  • 一级缓存是一个粗粒度的缓存,没有更新缓存和缓存过期的概念

MyBatis的一级缓存就是使用了简单的HashMap,MyBatis只负责将查询数据库的结果存储到缓存中去, 不会去判断缓存存放的时间是否过长、是否过期,因此也就没有对缓存的结果进行更新这一说了。

根据一级缓存的特性,在使用的过程中,我认为应该注意:

  • 对于数据变化频率很大,并且需要高时效准确性的数据要求,我们使用SqlSession查询的时候,要控制好SqlSession的生存时间, SqlSession的生存时间越长,它其中缓存的数据有可能就越旧,从而造成和真实数据库的误差;同时对于这种情况,用户也可以手动地适时清空SqlSession中的缓存;

  • 对于只执行、并且频繁执行大范围的select操作的SqlSession对象,SqlSession对象的生存时间不应过长。

二级缓存实现

MyBatis的二级缓存是Application级别的缓存,它可以提高对数据库查询的效率,以提高应用的性能。

MyBatis的缓存机制整体设计以及二级缓存的工作模式

如图所示,当开一个会话时,一个SqlSession对象会使用一个Executor对象来完成会话操作,MyBatis的二级缓存机制的关键就是对这个Executor对象做文章。如果用户配置了"cacheEnabled=true",那么MyBatis在为SqlSession对象创建Executor对象时,会对Executor对象加上一个装饰者:CachingExecutor,这时SqlSession使用CachingExecutor对象来完成操作请求。CachingExecutor对于查询请求,会先判断该查询请求在Application级别的二级缓存中是否有缓存结果,如果有查询结果,则直接返回缓存结果;如果缓存中没有,再交给真正的Executor对象来完成查询操作,之后CachingExecutor会将真正Executor返回的查询结果放置到缓存中,然后在返回给用户。

CachingExecutor是Executor的装饰者,以增强Executor的功能,使其具有缓存查询的功能,这里用到了设计模式中的装饰者模式,CachingExecutor和Executor的接口的关系如下类图所示:

MyBatis二级缓存的划分

MyBatis并不是简单地对整个Application就只有一个Cache缓存对象,它将缓存划分的更细,即是Mapper级别的,即每一个Mapper都可以拥有一个Cache对象,具体如下:

  • 为每一个Mapper分配一个Cache缓存对象(使用<cache>节点配置)

MyBatis将Application级别的二级缓存细分到Mapper级别,即对于每一个Mapper.xml,如果在其中使用了<cache> 节点,则MyBatis会为这个Mapper创建一个Cache缓存对象,如下图所示:

注:上述的每一个Cache对象,都会有一个自己所属的namespace命名空间,并且会将Mapper的 namespace作为它们的ID;

  • 多个Mapper共用一个Cache缓存对象(使用<cache-ref>节点配置)

如果你想让多个Mapper公用一个Cache的话,你可以使用<cache-ref namespace="">节点,来指定你的这个Mapper使用到了哪一个Mapper的Cache缓存。

使用二级缓存,必须要具备的条件

MyBatis对二级缓存的支持粒度很细,它会指定某一条查询语句是否使用二级缓存。

虽然在Mapper中配置了<cache>,并且为此Mapper分配了Cache对象,这并不表示我们使用Mapper中定义的查询语句查到的结果都会放置到Cache对象之中,我们必须指定Mapper中的某条选择语句是否支持缓存,即如下所示,在<select> 节点中配置useCache="true",Mapper才会对此Select的查询支持缓存特性,否则,不会对此Select查询,不会经过Cache缓存。如下所示,Select语句配置了useCache="true",则表明这条Select语句的查询会使用二级缓存。

<select id="selectByMinSalary" resultMap="BaseResultMap" parameterType="java.util.Map" useCache="true">

总之,要想使某条Select查询支持二级缓存,你需要保证:

  • MyBatis支持二级缓存的总开关:全局配置变量参数 cacheEnabled=true

  • 该select语句所在的Mapper,配置了<cache> 或<cached-ref>节点,并且有效

  • 该select语句的参数 useCache=true

一级缓存和二级缓存的使用顺序

请注意,如果你的MyBatis使用了二级缓存,并且你的Mapper和select语句也配置使用了二级缓存,那么在执行select查询的时候,MyBatis会先从二级缓存中取输入,其次才是一级缓存,即MyBatis查询数据的顺序是:二级缓存 ———> 一级缓存 ——> 数据库

二级缓存实现的选择

MyBatis对二级缓存的设计非常灵活,它自己内部实现了一系列的Cache缓存实现类,并提供了各种缓存刷新策略如LRU,FIFO等等;另外,MyBatis还允许用户自定义Cache接口实现,用户是需要实现org.apache.ibatis.cache.Cache接口,然后将Cache实现类配置在<cache type="">节点的type属性上即可;除此之外,MyBatis还支持跟第三方内存缓存库如Memecached的集成,总之,使用MyBatis的二级缓存有三个选择:

  • MyBatis自身提供的缓存实现;

  • 用户自定义的Cache接口实现;

  • 跟第三方内存缓存库的集成;

MyBatis自身提供的二级缓存的实现

MyBatis自身提供了丰富的,并且功能强大的二级缓存的实现,它拥有一系列的Cache接口装饰者,可以满足各种对缓存操作和更新的策略。

MyBatis定义了大量的Cache的装饰器来增强Cache缓存的功能,如下类图所示。

对于每个Cache而言,都有一个容量限制,MyBatis各供了各种策略来对Cache缓存的容量进行控制,以及对Cache中的数据进行刷新和置换。MyBatis主要提供了以下几个刷新和置换策略:

  • LRU:(Least Recently Used),最近最少使用算法,即如果缓存中容量已经满了,会将缓存中最近最少被使用的缓存记录清除掉,然后添加新的记录;

  • FIFO:(First in first out),先进先出算法,如果缓存中的容量已经满了,那么会将最先进入缓存中的数据清除掉;

  • Scheduled:指定时间间隔清空算法,该算法会以指定的某一个时间间隔将Cache缓存中的数据清空;

如何细粒度地控制二级缓存

关于MyBatis的二级缓存的实际问题

现有AMapper.xml中定义了对数据库表 ATable 的CRUD操作,BMapper定义了对数据库表BTable的CRUD操作;

假设 MyBatis 的二级缓存开启,并且 AMapper 中使用了二级缓存,AMapper对应的二级缓存为ACache;

除此之外,AMapper 中还定义了一个跟BTable有关的查询语句,类似如下所述:

<select id="selectATableWithJoin" resultMap="BaseResultMap" useCache="true">  
      select * from ATable left join BTable on ....  
</select>

执行以下操作:

  • 执行AMapper中的"selectATableWithJoin" 操作,此时会将查询到的结果放置到AMapper对应的二级缓存ACache中;

  • 执行BMapper中对BTable的更新操作(update、delete、insert)后,BTable的数据更新;

  • 再执行1完全相同的查询,这时候会直接从AMapper二级缓存ACache中取值,将ACache中的值直接返回;

好,问题就出现在第3步上:

由于AMapper的“selectATableWithJoin” 对应的SQL语句需要和BTable进行join查找,而在第 2 步BTable的数据已经更新了,但是第 3 步查询的值是第 1 步的缓存值,已经极有可能跟真实数据库结果不一样,即ACache中缓存数据过期了!

总结来看,就是:

对于某些使用了 join连接的查询,如果其关联的表数据发生了更新,join连接的查询由于先前缓存的原因,导致查询结果和真实数据不同步;

从MyBatis的角度来看,这个问题可以这样表述:

对于某些表执行了更新(update、delete、insert)操作后,如何去清空跟这些表有关联的查询语句所造成的缓存

当前MyBatis二级缓存的工作机制

MyBatis二级缓存的一个重要特点:即松散的Cache缓存管理和维护

一个Mapper中定义的增删改查操作只能影响到自己关联的Cache对象。如上图所示的Mapper namespace1中定义的若干CRUD语句,产生的缓存只会被放置到相应关联的Cache1中,即Mapper namespace2,namespace3,namespace4 中的CRUD的语句不会影响到Cache1。

可以看出,Mapper之间的缓存关系比较松散,相互关联的程度比较弱

现在再回到上面描述的问题,如果我们将AMapper和BMapper共用一个Cache对象,那么,当BMapper执行更新操作时,可以清空对应Cache中的所有的缓存数据,这样的话,数据不是也可以保持最新吗?

确实这个也是一种解决方案,不过,它会使缓存的使用效率变的很低!AMapper和BMapper的任意的更新操作都会将共用的Cache清空,会频繁地清空Cache,导致Cache实际的命中率和使用率就变得很低了,所以这种策略实际情况下是不可取的。

最理想的解决方案就是:

对于某些表执行了更新(update、delete、insert)操作后,去清空跟这些指定的表有关联的查询语句所造成的缓存; 这样,就是以很细的粒度管理MyBatis内部的缓存,使得缓存的使用率和准确率都能大大地提升。

文章转载自:seven97_top

原文链接:《深入理解Mybatis原理》Mybatis中的缓存实现原理 - seven97_top - 博客园

体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构


原文地址:https://blog.csdn.net/sdgfafg_25/article/details/145106219

免责声明:本站文章内容转载自网络资源,如侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!