【深度学习基础】多层感知机 | 多层感知机的实现
【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。
一、多层感知机的从零开始实现
我们已经在【深度学习基础】多层感知机 | 多层感知机概述 中描述了多层感知机(MLP),现在让我们尝试自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集。
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
(一)初始化模型参数
回想一下,Fashion-MNIST中的每个图像由 28 × 28 = 784 28 \times 28 = 784 28×28=784个灰度像素值组成。所有图像共分为10个类别。忽略像素之间的空间结构,我们可以将每个图像视为具有784个输入特征和10个类的简单分类数据集。首先,我们将实现一个具有单隐藏层的多层感知机,它包含256个隐藏单元。注意,我们可以将这两个变量都视为超参数。通常,我们选择2的若干次幂作为层的宽度。因为内存在硬件中的分配和寻址方式,这么做往往可以在计算上更高效。
我们用几个张量来表示我们的参数。注意,对于每一层我们都要记录一个权重矩阵和一个偏置向量。跟以前一样,我们要为损失关于这些参数的梯度分配内存。
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))
params = [W1, b1, W2, b2]
(二)激活函数
为了确保我们对模型的细节了如指掌,我们将实现ReLU激活函数,而不是直接调用内置的relu
函数。
def relu(X):
a = torch.zeros_like(X)
return torch.max(X, a)
(三)模型
因为我们忽略了空间结构,所以我们使用reshape
将每个二维图像转换为一个长度为num_inputs
的向量。只需几行代码就可以实现我们的模型。
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(X@W1 + b1) # 这里“@”代表矩阵乘法
return (H@W2 + b2)
(四)损失函数
由于我们已经从零实现过softmax函数,因此在这里我们直接使用高级API中的内置函数来计算softmax和交叉熵损失。回想一下我们之前在softmax回归的简洁实现中对这些复杂问题的讨论。我们鼓励感兴趣的读者查看损失函数的源代码,以加深对实现细节的了解。
loss = nn.CrossEntropyLoss(reduction='none')
(五)训练
幸运的是,多层感知机的训练过程与softmax回归的训练过程完全相同。可以直接调用d2l
包的train_ch3
函数(参见【深度学习基础】线性神经网络 | softmax回归的从零开始实现),将迭代周期数设置为10,并将学习率设置为0.1。
num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
为了对学习到的模型进行评估,我们将在一些测试数据上应用这个模型。
d2l.predict_ch3(net, test_iter)
二、多层感知机的简洁实现
本节将介绍通过高级API更简洁地实现多层感知机。
import torch
from torch import nn
from d2l import torch as d2l
模型
与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层(之前我们只添加了1个全连接层)。第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。第二层是输出层。
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
训练过程的实现与我们实现softmax回归时完全相同,这种模块化设计使我们能够将与模型架构有关的内容独立出来。
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
小结
- 手动实现一个简单的多层感知机是很容易的。然而如果有大量的层,从零开始实现多层感知机会变得很麻烦(例如,要命名和记录模型的参数)。
- 我们可以使用高级API更简洁地实现多层感知机。
- 对于相同的分类问题,多层感知机的实现与softmax回归的实现相同,只是多层感知机的实现里增加了带有激活函数的隐藏层。
原文地址:https://blog.csdn.net/Morse_Chen/article/details/145269891
免责声明:本站文章内容转载自网络资源,如侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!