基于深度学习的滑块验证破解方法及模型训练过程
深度学习破解滑块验证
深度学习训练模型
目录结构
--yolov5-master
--data
--VOC2028
--Annotations:标注好的xml文件
--ImageSets:训练集
--Main
--test.txt
--train.txt
--trainval.txt
--val.txt
--说明.txt
--JPEGImages:未标注的png图片
--Labels:图片进行归一化之后的标签文件
--Safety_Helmet_Train_dataset
--score
--images:区分训练集、测试集、验证集的图片文件
--labels:区分训练集、测试集、验证集的标签文件
--custom_data.yaml:小型配置文件
--runs
--train
--exp3等
--weights:训练完的模型
--best.pt:效果最好的模型
--last.pt:最后一轮训练完的模型
--weights:yolov5初始模型(yolov5s.pt)
--滑块测试.py:拖动滑块测试
--运行命令.txt:运行train.py的命令
解释:
运行NO1.py:生成test.txt、train.txt、trainval.txt、val.txt
运行NO2.py:生成images、labels
运行train.py:生成exp3等
模型训练步骤
-
下载yolov5模型
-
安装基本环境
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
-
安装CUDA:GPU编程的并行计算平台CUDA Toolkit 10.2 Download | NVIDIA Developer
-
安装cuDNN Archive:cuDNN Archive | NVIDIA Developer
下载完之后解压
将cudnn里面所有的东西都复制到
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2里面
-
上面2个东西安装好之后,可以检查一下
-
torch 安装
下载网址:
download.pytorch.org/whl/torch_stable.html
说明:
torch-2.0.0%2Bcu118-cp311-cp311-win_amd64.whl
就是给CUDA11.8,Python 3.11,Windows平台准备的
torch-2.0.0安装:
a. 下载好三个文件后,你就可以安装它了。使用pip安装这些文件,首先你要把它们放在一个文件夹里面。Linux
cd path_to_torch/ pip install ./torch*
Windwos
cd path_to_torch\ pip install .\torch*
b.
pip install torch==1.9.1+cu102 torchvision==0.11.2+cu102 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html
-
测试
-
安装标注软件
pip install labelImg python要求3.7
-
运行标注软件
C:\Users\l1853\anaconda3\envs\python37\Scripts
python labelImg.exe
-
标注完毕运行NO1,NO2
NO2需要修改一下标签名和图片格式
-
在data下创建custom_data.yaml配置文件
-
设置训练参数:train.py
# 指定训练集的配置文件 parser.add_argument('--data', type=str, default='data/custom_data.yaml', help='(optional) dataset.yaml path') # 指定训练集的训练模型:预训练模型 # parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path') parser.add_argument('--weights', type=str, default='runs/train/exp34/weights/best.pt', help='initial weights path') # parser.add_argument('--weights', type=str, default=ROOT / 'runs/train/exp12/weights/best.pt', help='initial weights path') # 指定训练轮数 parser.add_argument('--epochs', type=int, default=100, help='total training epochs') # 指定一次训练多少张图片,一般看显存,一张图大概占0.2G parser.add_argument('--batch-size', type=int, default=5, help='total batch size for all GPUs, -1 for autobatch')
-
运行命令开始训练
python train.py --batch-size 5 --epochs 50 --data ./data/custom_data.yaml --weights ./weights/yolov5s.pt -batch 16 一次喂多少数据,我这内存就能给16,所以可以不传按默认16 (如果内存比较小的,建议改为8,或者4) (但是也需要根据实际情况,看自身内存的) --epochs 50 代表迭代五十次,可自行修改 --data ./data/custom_data.yaml 代表数据集配置文件 --weights 代表预训练模型
-
训练结果
-
训练结束模型:runs/train/exp5
-
测试图片:data/images
-
测试结果:runs/detect/exp5
-
-
滑块测试.py
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. Usage - sources: $ python detect.py --weights yolov5s.pt --source 0 # webcam img.jpg # image vid.mp4 # video path/ # directory 'path/*.jpg' # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream Usage - formats: $ python detect.py --weights yolov5s.pt # PyTorch yolov5s.torchscript # TorchScript yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s.xml # OpenVINO yolov5s.engine # TensorRT yolov5s.mlmodel # CoreML (macOS-only) yolov5s_saved_model # TensorFlow SavedModel yolov5s.pb # TensorFlow GraphDef yolov5s.tflite # TensorFlow Lite yolov5s_edgetpu.tflite # TensorFlow Edge TPU yolov5s_paddle_model # PaddlePaddle """ # from __future__ import division import argparse import os import platform import sys from pathlib import Path import torch from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver import ActionChains from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By import time from models import * # from utils.utils import * # from utils.datasets import * import random from os.path import dirname, join import os import sys import time import datetime import argparse from PIL import Image import torch from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.ticker import NullLocator FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh) from utils.plots import Annotator, colors, save_one_box from utils.torch_utils import select_device, smart_inference_mode @smart_inference_mode() def run( weights=ROOT / 'yolov5s.pt', # model path or triton URL source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam) data=ROOT / 'data/coco128.yaml', # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride ): source = str(source) save_img = not nosave and not source.endswith('.txt') # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) screenshot = source.lower().startswith('screen') if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader bs = 1 # batch_size if webcam: view_img = check_imshow() dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) bs = len(dataset) elif screenshot: dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt s += '%gx%g ' % im.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): # 前2个貌似是左上角那个点的x,y,后面2个是宽和高 global distance distance = int(xyxy[0].item()) - 3 print(distance) # print(66666666666666666666,int(xyxy[0].item()),xyxy,int(xyxy[0].item())+int(xyxy[2].item())/2) # # # if save_txt: # Write to file # xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh # line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format # with open(f'{txt_path}.txt', 'a') as f: # f.write(('%g ' * len(line)).rstrip() % line + '\n') # # if save_img or save_crop or view_img: # Add bbox to image # c = int(cls) # integer class # label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') # annotator.box_label(xyxy, label, color=colors(c, True)) # if save_crop: # save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # # # Stream results # im0 = annotator.result() # if view_img: # if platform.system() == 'Linux' and p not in windows: # windows.append(p) # cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) # cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) # cv2.imshow(str(p), im0) # cv2.waitKey(1) # 1 millisecond # # # Save results (image with detections) # if save_img: # if dataset.mode == 'image': # cv2.imwrite(save_path, im0) # else: # 'video' or 'stream' # if vid_path[i] != save_path: # new video # vid_path[i] = save_path # if isinstance(vid_writer[i], cv2.VideoWriter): # vid_writer[i].release() # release previous video writer # if vid_cap: # video # fps = vid_cap.get(cv2.CAP_PROP_FPS) # w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # else: # stream # fps, w, h = 30, im0.shape[1], im0.shape[0] # save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos # vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) # vid_writer[i].write(im0) # # # Print time (inference-only) # LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") # # # Print results # t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image # LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) # if save_txt or save_img: # s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' # LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") # if update: # strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) def parse_opt(): parser = argparse.ArgumentParser() # 训练好的深度学习模型 # parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL') parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp57/weights/best.pt', help='model path or triton URL') # parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') parser.add_argument('--source', type=str, default='data/images', help='file/dir/URL/glob/screen/0(webcam)') # parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') parser.add_argument('--data', type=str, default='data/custom_data.yaml', help='(optional) dataset.yaml path') # parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[416], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return opt def main(opt): check_requirements(exclude=('tensorboard', 'thop')) return run(**vars(opt)) def simulateDragX(driver, source, targetOffsetX): """ 模仿人的拖拽动作:快速沿着X轴拖动(存在误差),再暂停,然后修正误差 防止被检测为机器人,出现“图片被怪物吃掉了”等验证失败的情况 :param source:要拖拽的html元素 :param targetOffsetX: 拖拽目标x轴距离 :return: None """ action_chains = webdriver.ActionChains(driver) # 点击,准备拖拽 action_chains.click_and_hold(source) # 拖动次数,二到三次 dragCount = random.randint(2, 3) if dragCount == 2: # 总误差值 # sumOffsetx = random.randint(-15, 15) sumOffsetx = 0 action_chains.move_by_offset(targetOffsetX + sumOffsetx, 0) # 暂停一会 action_chains.pause(0.8) # 修正误差,防止被检测为机器人,出现图片被怪物吃掉了等验证失败的情况 action_chains.move_by_offset(-sumOffsetx, 0) elif dragCount == 3: # 总误差值 # sumOffsetx = random.randint(-15, 15) sumOffsetx = 0 action_chains.move_by_offset(targetOffsetX + sumOffsetx, 0) # 暂停一会 action_chains.pause(0.6) # 已修正误差的和 fixedOffsetX = 0 # 第一次修正误差 if sumOffsetx < 0: offsetx = random.randint(sumOffsetx, 0) else: offsetx = random.randint(0, sumOffsetx) fixedOffsetX = fixedOffsetX + offsetx action_chains.move_by_offset(-offsetx, 0) action_chains.pause(0.6) # 最后一次修正误差 action_chains.move_by_offset(-sumOffsetx + fixedOffsetX, 0) action_chains.pause(0.8) else: raise Exception("莫不是系统出现了问题?!") action_chains.release().perform() class SeleniumLogin(): def __init__(self, timeout=20): self.timeout = timeout # self.browser = webdriver.Chrome('D:\\an\envs\python3\Lib\site-packages\\chromedriver.exe') self.browser = webdriver.Chrome('C:\\Users\\l1853\\anaconda3\\Scripts\\chromedriver.exe') self.browser.maximize_window() self.wait = WebDriverWait(self.browser, self.timeout) def move_to_gap(self, slider, tracks): """ 拖动滑块 :param slider: 滑块 :param tracks: 轨迹 :return: """ # 模拟滑动滑块 action = ActionChains(self.browser) action.click_and_hold(slider).perform() # action.reset_actions() # 清除之前的action for i in tracks: action.move_by_offset(xoffset=i, yoffset=0).perform() time.sleep(0.5) action.release().perform() def login(self): wait = WebDriverWait(self.browser, 10) self.browser.get('https://captcha1.scrape.center/') while True: while True: button = wait.until(EC.element_to_be_clickable( (By.CSS_SELECTOR, '.el-button'))) button.click() try: captcha = wait.until( EC.presence_of_element_located((By.CSS_SELECTOR, '.geetest_slicebg.geetest_absolute'))) break time.sleep(1) except: print(f'点击失败重洗点击') while True: time.sleep(1) captcha.screenshot( f'D:\大纲\上课知识\爬虫\爬虫视频\20230412crwlab部署和深度学习破解滑块验证\yolov5-maste11r\yolov5-master\data\images\\captcha_0.png') time.sleep(1) opt = parse_opt() main(opt) # get_distance() # print(111111111111111111111111111,distance) if distance and distance > 0: break else: refresh = wait.until(EC.element_to_be_clickable( (By.CSS_SELECTOR, '.geetest_refresh_1'))) refresh.click() time.sleep(1) slide_button = self.wait.until( EC.element_to_be_clickable((By.XPATH, '//div[@class="geetest_slider_button"]')) ) # 滑动滑块进行验证 # self.move_to_gap(slide_button, tracks) simulateDragX(self.browser, slide_button, distance) time.sleep(2) try: refresh = wait.until(EC.element_to_be_clickable( (By.CSS_SELECTOR, '.geetest_refresh_1'))) refresh.click() print(111111111111111111) except: # try: self.browser.refresh() # except: # print('ok') # break time.sleep(2) # if flag==1: # print('ok') # break if __name__ == "__main__": a = SeleniumLogin() a.login()
a. 将parse_opt()里面的模型改成训练好的深度学习模型即可 b. 然后运行两行代码: opt = parse_opt() main(opt) c. 就可以获得distance值(global全局变量) d. 根据distance调用滑块拖动函数即可:模拟人为加速度拖动不好,一卡一卡的会被网站识别出。用快速拖动即可
解决问题
解决YOLOV5出现全为nan和0的问题
就记得cuda不能用最新版本,用10.2版本就行,太新的版本有毒
可以参考https://blog.csdn.net/weixin_45707277/article/details/125382624
解决如下错误
则是资源不够用
- 1是减少单次训练图片的数量
- 2 是加大内存
每个epoch使用的是同样的数据,重复同样的过程,为什么模型的性能还会发生变化?
每个epoch使用的是同样的数据,重复同样的过程,为什么模型的性能还会发生变化?_模型推理同样的数据重复推理为什么会快很多-CSDN博客
滑块测试报错如下
更多精致内容:[CodeRealm]
原文地址:https://blog.csdn.net/m0_74087660/article/details/145096107
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!