3DGabor滤波器实现人脸特征提取
import cv2
import numpy as np
# 定义 Gabor 滤波器的参数
kSize = 31 # 滤波器核的大小
g_sigma = 3.0 # 高斯包络的标准差
g_theta = np.pi / 4 # Gabor 函数的方向
g_lambda = 10.0 # 正弦波的波长
g_gamma = 0.5 # 空间纵横比
g_psi = np.pi / 2 # 相位偏移
# 生成 Gabor 滤波器核
kernel = cv2.getGaborKernel((kSize, kSize), g_sigma, g_theta, g_lambda, g_gamma, g_psi, ktype=cv2.CV_32F)
# 读取多波段图像
image = cv2.imread('1.png', cv2.IMREAD_UNCHANGED)
# 获取图像的波段数
num_bands = image.shape[2] if len(image.shape) == 3 else 1
# 初始化处理后的多波段图像
filtered_image = np.zeros_like(image, dtype=np.float32)
# 遍历每个波段
for band in range(num_bands):
# 提取当前波段
band_image = image[:, :, band] if len(image.shape) == 3 else image
# 应用 Gabor 滤波器
filtered_band_image = cv2.filter2D(band_image, cv2.CV_32F, kernel)
# 将处理后的波段放回结果图像中
if len(image.shape) == 3:
filtered_image[:, :, band] = filtered_band_image
else:
filtered_image = filtered_band_image
# 将处理后的图像转换为合适的数据类型
filtered_image = np.clip(filtered_image, 0, 255).astype(np.uint8)
# 显示结果
if num_bands == 3:
cv2.imshow('Original Image', image)
cv2.imshow('Filtered Image', filtered_image)
else:
for band in range(num_bands):
cv2.imshow(f'Original Band {band + 1}', image[:, :, band] if len(image.shape) == 3 else image)
cv2.imshow(f'Filtered Band {band + 1}', filtered_image[:, :, band] if len(image.shape) == 3 else filtered_image)
# 保存结果
cv2.imwrite('filtered_multiband_image.png', filtered_image)
# 等待按键,然后关闭所有窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
原文地址:https://blog.csdn.net/qq_52964132/article/details/145083319
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!