WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
预测效果
基本介绍
基于WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型多变量时序预测一键对比(仅运行一个main即可)
Matlab代码,每个模型的预测结果和组合对比结果都有!
1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。
2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!
3.WOA优化参数为:隐藏层节点数,学习率,正则化系数。
4.鲸鱼优化算法(whale optimization algorithm,WOA)是由Mirjalili和Lewis于2016年提出的一种新型群体智能优化搜索方法,它源于对自然界中座头鲸群体狩猎行为的模拟,该算法整个过程包含搜索觅食、收缩包围和螺旋更新位置三个阶段。鲸鱼优化算法的三个种群更新机制相互独立,因此其寻优阶段的全局探索和局部开发过程得以分别运行及控制。此外, 鲸鱼优化算法不需要人为的设置各种控制参数值, 提高了算法的使用效率并降低了应用难度。与其它群体智能优化算法相比, WOA算法结构新颖, 控制参数少,在许多数值优化和工程问题的求解中表现出较好的寻优性能,优于蚁群算法和粒子群算法等智能优化算法。
5.运行环境要求MATLAB版本为2023b及其以上。
评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多
代码中文注释清晰,质量极高,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白
程序设计
- 完整代码私信回复WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
result = xlsread('数据集.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 2; % 延时步长(前面多行历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
nim = size(result, 2) - 1; % 原始数据的特征是数目
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征长度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, -1, 1);%将训练集和测试集的数据调整到0到1之间
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, -1, 1);% 对测试集数据做归一化
t_test = mapminmax('apply', T_test, ps_output);
%% 得到最优参数
best_hd = round( Best_pos(1,3)); % 最佳隐藏层节点数
best_lr = abs(Best_pos(1,2)); % 最佳初始学习率
best_l2 = abs(Best_pos(1,1)); % 最佳L2正则化系数
%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [
sequenceInputLayer([f_, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[f_, 1, 1]
sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [
convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图
reluLayer("Name", "relu_1") % Relu 激活层
convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],32个特征图
reluLayer("Name", "relu_2")]; % Relu 激活层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [
sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层
flattenLayer("Name", "flatten") % 网络铺平层
gruLayer(best_hd, "Name", "gru", "OutputMode","last") % GRU层
fullyConnectedLayer(outdim, "Name", "fc") % 全连接层
regressionLayer("Name", "regressionoutput")]; % 回归层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize");
% 折叠层输出连接反折叠层输入
% 激活层输出 连接 反折叠层输入
%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法
'MaxEpochs', 50,... % 最大训练次数 1000
'MiniBatchSize',512, ... %批大小
'InitialLearnRate', best_lr,... % 初始学习率为0.001
'L2Regularization', best_l2,... % L2正则化参数
'LearnRateSchedule', 'piecewise',... % 学习率下降
'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1
'LearnRateDropPeriod', 40,... % 经过800次训练后 学习率为 0.001*0.1
'Shuffle', 'every-epoch',... % 每次训练打乱数据集
'ValidationPatience', Inf,... % 关闭验证
'Plots', 'none',... % 画出曲线
'Verbose', false);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
原文地址:https://blog.csdn.net/kjm13182345320/article/details/145215407
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!