2.13 转换矩阵
转换矩阵引用了库nalgebra,使用时研究具体实现。
use std::ops;
use nalgebra::Perspective3;
use crate::Scalar;
use super::{Aabb, LineSegment, Point, Triangle, Vector};
/// An affine transform
#[repr(C)]
#[derive(Debug, Clone, Copy, Default)]
pub struct Transform(nalgebra::Transform<f64, nalgebra::TAffine, 3>);
impl Transform {
/// Construct an identity transform
pub fn identity() -> Self {
Self(nalgebra::Transform::identity())
}
/// Construct a translation
pub fn translation(offset: impl Into<Vector<3>>) -> Self {
let offset = offset.into();
Self(nalgebra::Transform::from_matrix_unchecked(
nalgebra::OMatrix::new_translation(&offset.to_na()),
))
}
/// Construct a rotation
///
/// The direction of the vector defines the rotation axis. Its length
/// defines the angle of the rotation.
pub fn rotation(axis_angle: impl Into<Vector<3>>) -> Self {
let axis_angle = axis_angle.into();
Self(nalgebra::Transform::from_matrix_unchecked(
nalgebra::OMatrix::<_, nalgebra::Const<4>, _>::new_rotation(
axis_angle.to_na(),
),
))
}
/// Construct a scaling
pub fn scale(scaling_factor: f64) -> Self {
Self(nalgebra::Transform::from_matrix_unchecked(
nalgebra::OMatrix::new_scaling(scaling_factor),
))
}
/// # Extract the "right" vector from the rotational component
pub fn right(&self) -> Vector<3> {
let d = self.data();
Vector::from([d[0], d[1], d[2]])
}
/// # Extract the "up" vector from the rotational component
pub fn up(&self) -> Vector<3> {
let d = self.data();
Vector::from([d[4], d[5], d[6]])
}
/// Transform the given point
pub fn transform_point(&self, point: &Point<3>) -> Point<3> {
Point::from(self.0.transform_point(&point.to_na()))
}
/// Inverse transform given point
pub fn inverse_transform_point(&self, point: &Point<3>) -> Point<3> {
Point::from(self.0.inverse_transform_point(&point.to_na()))
}
/// Transform the given vector
pub fn transform_vector(&self, vector: &Vector<3>) -> Vector<3> {
Vector::from(self.0.transform_vector(&vector.to_na()))
}
/// Transform the given segment
pub fn transform_segment(
&self,
segment: &LineSegment<3>,
) -> LineSegment<3> {
let [a, b] = &segment.points;
LineSegment::from([self.transform_point(a), self.transform_point(b)])
}
/// Transform the given triangle
pub fn transform_triangle(&self, triangle: &Triangle<3>) -> Triangle<3> {
let [a, b, c] = &triangle.points;
Triangle::from([
self.transform_point(a),
self.transform_point(b),
self.transform_point(c),
])
}
/// Inverse transform
pub fn inverse(&self) -> Self {
Self(self.0.inverse())
}
/// Transpose transform
pub fn transpose(&self) -> Self {
Self(nalgebra::Transform::from_matrix_unchecked(
self.0.to_homogeneous().transpose(),
))
}
/// Project transform according to camera specification, return data as an array.
/// Used primarily for graphics code.
pub fn project_to_array(
&self,
aspect_ratio: f64,
fovy: f64,
znear: f64,
zfar: f64,
) -> [Scalar; 16] {
let projection = Perspective3::new(aspect_ratio, fovy, znear, zfar);
let mut array = [0.; 16];
array.copy_from_slice(
(projection.to_projective() * self.0).matrix().as_slice(),
);
array.map(Scalar::from)
}
/// Return a copy of the inner nalgebra transform
pub fn get_inner(&self) -> nalgebra::Transform<f64, nalgebra::TAffine, 3> {
self.0
}
/// Transform the given axis-aligned bounding box
pub fn transform_aabb(&self, aabb: &Aabb<3>) -> Aabb<3> {
Aabb {
min: self.transform_point(&aabb.min),
max: self.transform_point(&aabb.max),
}
}
/// Exposes the data of this Transform as a slice of f64.
pub fn data(&self) -> &[f64] {
self.0.matrix().data.as_slice()
}
/// Extract the rotation component of this transform
pub fn extract_rotation(&self) -> Self {
Self(nalgebra::Transform::from_matrix_unchecked(
self.0.matrix().fixed_resize::<3, 3>(0.).to_homogeneous(),
))
}
/// Extract the translation component of this transform
pub fn extract_translation(&self) -> Self {
*self * self.extract_rotation().inverse()
}
}
impl ops::Mul<Self> for Transform {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
Self(self.0.mul(rhs.0))
}
}
#[cfg(test)]
mod tests {
use approx::assert_abs_diff_eq;
use crate::{Scalar, Vector};
use super::Transform;
#[test]
fn extract_rotation_translation() {
let rotation =
Transform::rotation(Vector::unit_z() * (Scalar::PI / 2.));
let translation = Transform::translation([1., 2., 3.]);
assert_abs_diff_eq!(
(translation * rotation).extract_rotation().data(),
rotation.data(),
epsilon = 1e-8,
);
assert_abs_diff_eq!(
(translation * rotation).extract_translation().data(),
translation.data(),
epsilon = 1e-8,
);
assert_abs_diff_eq!(
(rotation * translation).extract_rotation().data(),
rotation.data(),
epsilon = 1e-8,
);
assert_abs_diff_eq!(
(rotation * translation).extract_translation().data(),
Transform::translation([-2., 1., 3.]).data(),
epsilon = 1e-8,
);
}
}
原文地址:https://blog.csdn.net/weixin_43219667/article/details/143934682
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!