自学内容网 自学内容网

微分方程(Blanchard Differential Equations 4th)中文版Exercise 5.1

  1. For the competing species population model
    d x d t = 2 x ( 1 − x / 2 ) − x y , d y d t = 3 y ( 1 − y / 3 ) − 2 x y . \begin{align} \frac{dx}{dt} &= 2x(1-x/2) - xy, \\ \frac{dy}{dt} &= 3y(1 - y/3) -2xy. \end{align} dtdxdtdy=2x(1x/2)xy,=3y(1y/3)2xy.
    studied in this section, we showed that the equilibrium point ( 1 , 1 ) (1, 1) (1,1) is a saddle.
    (a) Find the linearized system near each of the other equilibrium points.
    (b) Classify each equilibrium point (as either a source, a sink, a saddle, . . . ).
    ( c ) (c) (c) Sketch the phase portrait of each linearized system.
    (d) Give a brief description of the phase portrait near each equilibrium point of the
    nonlinear system.

ANS:

(a) Rewrite
0 = 2 x ( 1 − x / 2 ) − x y , 0 = 3 y ( 1 − y / 3 ) − 2 x y . \begin{align} 0 &= 2x(1-x/2) - xy, \\ 0 &= 3y(1 - y/3) -2xy. \end{align} 00=2x(1x/2)xy,=3y(1y/3)2xy.
as
0 = 2 x ( 2 − x − y ) , 0 = y ( 3 − y − 2 x ) . \begin{align} 0 & = 2x(2-x-y), \\ 0 & = y(3 - y-2x). \end{align} 00=2x(2xy),=y(3y2x).
solve this nonlinear eqns, one can get four pairs of equilibrium vector solutions(ES) ( 0 0 2 0 0 3 1 1 ) \left(\begin{array}{cc} 0 & 0\\ 2 & 0\\ 0 & 3\\ 1 & 1 \end{array}\right) 02010031
(b) Directly computing, the Jacobi Matrix(JM) of the system is
( 2 − y − 2   x − x − 2   y 3 − 2   y − 2   x ) \left(\begin{array}{cc} 2-y-2\,x & -x\\ -2\,y & 3-2\,y-2\,x \end{array}\right) (2y2x2yx32y2x)
Substituting E.S. into J.M., we have
( 2 0 − 2 − 2 − 1 0 − 1 − 1 0 3 0 − 1 − 6 − 3 − 2 − 1 ) \left(\begin{array}{cc} 2 & 0\\ -2 & -2\\ -1 & 0\\ -1 & -1\\ 0 & 3\\ 0 & -1\\ -6 & -3\\ -2 & -1 \end{array}\right) 2211006202013131
The corresponding eigenvalues and eigenvectors are
( 2 0 0 3 ) \left(\begin{array}{cc} 2 & 0\\ 0 & 3 \end{array}\right) (2003) ( − 2 0 0 − 1 ) \left(\begin{array}{cc} -2 & 0\\ 0 & -1 \end{array}\right) (2001) ( − 3 0 0 − 1 ) \left(\begin{array}{cc} -3 & 0\\ 0 & -1 \end{array}\right) (3001) ( − 2 − 1 0 0 2 − 1 ) \left(\begin{array}{cc} -\sqrt{2}-1 & 0\\ 0 & \sqrt{2}-1 \end{array}\right) (2 1002 1)

( 1 0 0 1 ) \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) (1001) ( 1 − 2 0 1 ) \left(\begin{array}{cc} 1 & -2\\ 0 & 1 \end{array}\right) (1021) ( 0 − 1 3 1 1 ) \left(\begin{array}{cc} 0 & -\frac{1}{3}\\ 1 & 1 \end{array}\right) (01311) ( 2 2 − 2 2 1 1 ) \left(\begin{array}{cc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ 1 & 1 \end{array}\right) (22 122 1)
Therefore, the four pairs of E.S. are Source, Sink, Sink and Saddle respectively.
©,(d) the global description of the phase portrait of the nonlinear system is as following.
在这里插入图片描述


原文地址:https://blog.csdn.net/weixin_42794212/article/details/143886321

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!