自学内容网 自学内容网

FPGA 串口与HC05蓝牙模块通信

介绍

  关于接线:HC-05蓝牙模块一共有6个引脚,但经过我查阅资料以及自己的实操,实际上只需要用到中间的4个引脚即可(即RXD,TXD,GND,VCC)。需要注意的是,蓝牙模块的RXD引脚需要接单片机的TXD引脚,同样,蓝牙模块的TXD引脚需要接单片机的RXD引脚!也就是RXD--TXD,TXD--RXD,VCC--5V,GND--GND(注:HC-05模块的TX对于FPGA来说是 RX)

FPGA代码

//
// Company: 武汉芯路恒科技有限公司
// Engineer: 小梅哥团队
// Web: www.corecourse.cn
// 
// Create Date: 2020/07/20 00:00:00
// Design Name: uart_rx
// Module Name: uart_byte_rx
// Project Name: uart_rx
// Description: 串口接收模块
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//

module uart_byte_rx(
clk,
reset_n,

baud_set,
uart_rx,

data_byte,
rx_done
);
wire reset=~reset_n;

input clk;    //模块全局时钟输入,50M
input reset_n;   //复位信号输入,低有效

input [2:0]baud_set;  //波特率设置
input uart_rx;   //串口输入信号

output [7:0]data_byte; //串口接收的1byte数据
output rx_done;   //1byte数据接收完成标志

reg [7:0]data_byte;
reg rx_done;
reg uart_rx_sync1;   //同步寄存器
reg uart_rx_sync2;   //同步寄存器

reg uart_rx_reg1;    //数据寄存器
reg uart_rx_reg2;    //数据寄存器

reg [15:0]bps_DR;    //分频计数最大值
reg [15:0]div_cnt;   //分频计数器
reg bps_clk;   //波特率时钟
reg [7:0] bps_cnt;   //波特率时钟计数器
reg uart_state;//接收数据状态

wire uart_rx_nedge;  

reg [2:0]START_BIT;
reg [2:0]STOP_BIT;
reg [2:0]data_byte_pre [7:0];

//同步串行输入信号,消除亚稳态
always@(posedge clk or posedge reset)
if(reset)begin
uart_rx_sync1 <= 1'b0;
uart_rx_sync2 <= 1'b0;
end
else begin
uart_rx_sync1 <= uart_rx;
uart_rx_sync2 <= uart_rx_sync1;
end

//数据寄存器
always@(posedge clk or posedge reset)
if(reset)begin
uart_rx_reg1 <= 1'b0;
uart_rx_reg2 <= 1'b0;
end
else begin
uart_rx_reg1 <= uart_rx_sync2;
uart_rx_reg2 <= uart_rx_reg1;
end

  //下降沿检测
assign uart_rx_nedge = !uart_rx_reg1 & uart_rx_reg2;

always@(posedge clk or posedge reset)
if(reset)
bps_DR <= 16'd324;
else begin
case(baud_set)
0:bps_DR <= 16'd324;
1:bps_DR <= 16'd162;
2:bps_DR <= 16'd80;
3:bps_DR <= 16'd53;
4:bps_DR <= 16'd26;
default:bps_DR <= 16'd324;
endcase
end

//counter
always@(posedge clk or posedge reset)
if(reset)
div_cnt <= 16'd0;
else if(uart_state)begin
if(div_cnt == bps_DR)
div_cnt <= 16'd0;
else
div_cnt <= div_cnt + 1'b1;
end
else
div_cnt <= 16'd0;

// bps_clk gen
always@(posedge clk or posedge reset)
if(reset)
bps_clk <= 1'b0;
else if(div_cnt == 16'd1)
bps_clk <= 1'b1;
else
bps_clk <= 1'b0;

//bps counter
always@(posedge clk or posedge reset)
if(reset)
bps_cnt <= 8'd0;
else if(bps_cnt == 8'd159 | (bps_cnt == 8'd12 && (START_BIT > 2)))
bps_cnt <= 8'd0;
else if(bps_clk)
bps_cnt <= bps_cnt + 1'b1;
else
bps_cnt <= bps_cnt;

always@(posedge clk or posedge reset)
if(reset)
rx_done <= 1'b0;
else if(bps_cnt == 8'd159)
rx_done <= 1'b1;
else
rx_done <= 1'b0;

always@(posedge clk or posedge reset)
if(reset)begin
START_BIT <= 3'd0;
data_byte_pre[0] <= 3'd0;
data_byte_pre[1] <= 3'd0;
data_byte_pre[2] <= 3'd0;
data_byte_pre[3] <= 3'd0;
data_byte_pre[4] <= 3'd0;
data_byte_pre[5] <= 3'd0;
data_byte_pre[6] <= 3'd0;
data_byte_pre[7] <= 3'd0;
STOP_BIT <= 3'd0;
end
else if(bps_clk)begin
case(bps_cnt)
0:begin
        START_BIT <= 3'd0;
        data_byte_pre[0] <= 3'd0;
        data_byte_pre[1] <= 3'd0;
        data_byte_pre[2] <= 3'd0;
        data_byte_pre[3] <= 3'd0;
        data_byte_pre[4] <= 3'd0;
        data_byte_pre[5] <= 3'd0;
        data_byte_pre[6] <= 3'd0;
        data_byte_pre[7] <= 3'd0;
        STOP_BIT <= 3'd0;
      end
6 ,7 ,8 ,9 ,10,11:START_BIT <= START_BIT + uart_rx_sync2;
22,23,24,25,26,27:data_byte_pre[0] <= data_byte_pre[0] + uart_rx_sync2;
38,39,40,41,42,43:data_byte_pre[1] <= data_byte_pre[1] + uart_rx_sync2;
54,55,56,57,58,59:data_byte_pre[2] <= data_byte_pre[2] + uart_rx_sync2;
70,71,72,73,74,75:data_byte_pre[3] <= data_byte_pre[3] + uart_rx_sync2;
86,87,88,89,90,91:data_byte_pre[4] <= data_byte_pre[4] + uart_rx_sync2;
102,103,104,105,106,107:data_byte_pre[5] <= data_byte_pre[5] + uart_rx_sync2;
118,119,120,121,122,123:data_byte_pre[6] <= data_byte_pre[6] + uart_rx_sync2;
134,135,136,137,138,139:data_byte_pre[7] <= data_byte_pre[7] + uart_rx_sync2;
150,151,152,153,154,155:STOP_BIT <= STOP_BIT + uart_rx_sync2;
default:
      begin
        START_BIT <= START_BIT;
        data_byte_pre[0] <= data_byte_pre[0];
        data_byte_pre[1] <= data_byte_pre[1];
        data_byte_pre[2] <= data_byte_pre[2];
        data_byte_pre[3] <= data_byte_pre[3];
        data_byte_pre[4] <= data_byte_pre[4];
        data_byte_pre[5] <= data_byte_pre[5];
        data_byte_pre[6] <= data_byte_pre[6];
        data_byte_pre[7] <= data_byte_pre[7];
        STOP_BIT <= STOP_BIT;
      end
endcase
end

always@(posedge clk or posedge reset)
if(reset)
data_byte <= 8'd0;
else if(bps_cnt == 8'd159)begin
data_byte[0] <= data_byte_pre[0][2];
data_byte[1] <= data_byte_pre[1][2];
data_byte[2] <= data_byte_pre[2][2];
data_byte[3] <= data_byte_pre[3][2];
data_byte[4] <= data_byte_pre[4][2];
data_byte[5] <= data_byte_pre[5][2];
data_byte[6] <= data_byte_pre[6][2];
data_byte[7] <= data_byte_pre[7][2];
end

always@(posedge clk or posedge reset)
if(reset)
uart_state <= 1'b0;
else if(uart_rx_nedge)
uart_state <= 1'b1;
else if(rx_done || (bps_cnt == 8'd12 && (START_BIT > 2)) || (bps_cnt == 8'd155 && (STOP_BIT < 3)))
uart_state <= 1'b0;
else
uart_state <= uart_state;

endmodule
//
// Company: 武汉芯路恒科技有限公司
// Engineer: 小梅哥团队
// Web: www.corecourse.cn
// 
// Create Date: 2020/07/20 00:00:00
// Design Name: uart_tx
// Module Name: uart_byte_tx
// Project Name: uart_tx
// Description: 串口发送模块
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//

module uart_byte_tx(
clk,
reset_n,
  
data_byte,
send_en,   
baud_set,  

uart_tx,  
tx_done,   
uart_state 
);

input clk ;    //模块全局时钟输入,50M
input reset_n;    //复位信号输入,低有效
input [7:0]data_byte;  //待传输8bit数据
input send_en;    //发送使能
input [2:0]baud_set;   //波特率设置

output reg uart_tx;    //串口输出信号
output reg tx_done;    //1byte数据发送完成标志
output reg uart_state; //发送数据状态

wire reset=~reset_n;
localparam START_BIT = 1'b0;
localparam STOP_BIT = 1'b1; 

reg bps_clk;     //波特率时钟
reg [15:0]div_cnt;      //分频计数器
reg [15:0]bps_DR;       //分频计数最大值
reg [3:0]bps_cnt;      //波特率时钟计数器
reg [7:0]data_byte_reg;//data_byte寄存后数据

always@(posedge clk or posedge reset)
if(reset)
uart_state <= 1'b0;
else if(send_en)
uart_state <= 1'b1;
else if(bps_cnt == 4'd11)
uart_state <= 1'b0;
else
uart_state <= uart_state;

always@(posedge clk or posedge reset)
if(reset)
data_byte_reg <= 8'd0;
else if(send_en)
data_byte_reg <= data_byte;
else
data_byte_reg <= data_byte_reg;

always@(posedge clk or posedge reset)
if(reset)
bps_DR <= 16'd5207;
else begin
case(baud_set)
0:bps_DR <= 16'd5207;
1:bps_DR <= 16'd2603;
2:bps_DR <= 16'd1301;
3:bps_DR <= 16'd867;
4:bps_DR <= 16'd433;
default:bps_DR <= 16'd5207;
endcase
end

//counter
always@(posedge clk or posedge reset)
if(reset)
div_cnt <= 16'd0;
else if(uart_state)begin
if(div_cnt == bps_DR)
div_cnt <= 16'd0;
else
div_cnt <= div_cnt + 1'b1;
end
else
div_cnt <= 16'd0;

// bps_clk gen
always@(posedge clk or posedge reset)
if(reset)
bps_clk <= 1'b0;
else if(div_cnt == 16'd1)
bps_clk <= 1'b1;
else
bps_clk <= 1'b0;

//bps counter
always@(posedge clk or posedge reset)
if(reset)
bps_cnt <= 4'd0;
else if(bps_cnt == 4'd11)
bps_cnt <= 4'd0;
else if(bps_clk)
bps_cnt <= bps_cnt + 1'b1;
else
bps_cnt <= bps_cnt;

always@(posedge clk or posedge reset)
if(reset)
tx_done <= 1'b0;
else if(bps_cnt == 4'd11)
tx_done <= 1'b1;
else
tx_done <= 1'b0;

always@(posedge clk or posedge reset)
if(reset)
uart_tx <= 1'b1;
else begin
case(bps_cnt)
0:uart_tx <= 1'b1;
1:uart_tx <= START_BIT;
2:uart_tx <= data_byte_reg[0];
3:uart_tx <= data_byte_reg[1];
4:uart_tx <= data_byte_reg[2];
5:uart_tx <= data_byte_reg[3];
6:uart_tx <= data_byte_reg[4];
7:uart_tx <= data_byte_reg[5];
8:uart_tx <= data_byte_reg[6];
9:uart_tx <= data_byte_reg[7];
10:uart_tx <= STOP_BIT;
default:uart_tx <= 1'b1;
endcase
end

endmodule
module top(
inputclk,
inputreset_n,
input key_in,
inputhc05_rx,
inputuart_rx,
outputhc05_tx,
outputuart_tx
);

wire [7:0]data;
wire  [7:0]rx_data;

reg send_en; 
wire key_flag;
wire key_state;


key_filter key_filter(
.clk(clk),
.reset_n(reset_n),

.key_in(key_in),
.key_flag(key_flag),
.key_state(key_state)
);


always @ (posedge clk or negedge reset_n)
if (!reset_n)
send_en <= 0;
else if (key_flag && (!key_state))
send_en <= ~send_en;
else 
send_en <= 0;


uart_byte_tx tx_inst_hc05(
.clk(clk),
.reset_n(reset_n),
  
.data_byte(data),
.send_en(send_en),   
.baud_set(0),  

.uart_tx(hc05_tx),  
.tx_done(),   
.uart_state ()
);

uart_byte_tx tx_inst_uart(
.clk(clk),
.reset_n(reset_n),
  
.data_byte(rx_data),
.send_en(send_en),   
.baud_set(0),  

.uart_tx(uart_tx),  
.tx_done(),   
.uart_state ()
);

uart_byte_rx  rx_inst_hc05(
.clk(clk),
.reset_n(reset_n),

.baud_set(0),
.uart_rx(hc05_rx),

.data_byte(rx_data),
.rx_done()
);

uart_byte_rx  rx_inst_uart(
.clk(clk),
.reset_n(reset_n),

.baud_set(0),
.uart_rx(uart_rx),

.data_byte(data),
.rx_done()
);


endmodule 

实验现象

通过蓝牙助手发送了一个16进制的数据66.

同时通过串口助手发送了一个16进制的数据55。接着按下按键S0。

可以看到串口接收到蓝牙助手发过来的数据,蓝牙助手也就接收到串口发过来的数据


原文地址:https://blog.csdn.net/weixin_62953178/article/details/145166970

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!