flink学习(14)—— 双流join
概述
Join:内连接
CoGroup:内连接,左连接,右连接
Interval Join:点对面
Join
1、Join 将有相同 Key 并且位于同一窗口中的两条流的元素进行关联。
2、Join 可以支持处理时间(processing time)和事件时间(event time)两种时间特征。
3、Join 通用用法如下:
stream.join(otherStream)
.where(<KeySelector>)
.equalTo(<KeySelector>)
.window(<WindowAssigner>)
.apply(<JoinFunction>)
滚动窗口
package com.bigdata.day07;
import org.apache.commons.lang3.time.DateUtils;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import java.text.ParseException;
import java.time.Duration;
import java.util.Date;
/**
* 内连接
* 可以通过两个socket流,将数据合并为一个三元组,key,value1,value2
*/
public class _01_双流join_join_内连接 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 绿色的流
DataStreamSource<String> source = env.socketTextStream("localhost", 7777);
SingleOutputStreamOperator<Tuple3<String, Integer, String>> greenSource = source.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String line) throws Exception {
String[] split = line.split(",");
return Tuple3.of(split[0], Integer.valueOf(split[1]), split[2]);
}
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> tuple3, long recordTimestamp) {
String timeStr = tuple3.f2;
try {
Date date = DateUtils.parseDate(timeStr, "yyyy-MM-dd hh-mm-ss");
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
}));
// 红色的流
DataStreamSource<String> source2 = env.socketTextStream("localhost", 7778);
SingleOutputStreamOperator<Tuple3<String, Integer, String>> redSource = source2.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String line) throws Exception {
String[] split = line.split(",");
return Tuple3.of(split[0], Integer.valueOf(split[1]), split[2]);
}
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> tuple3, long recordTimestamp) {
String timeStr = tuple3.f2;
try {
Date date = DateUtils.parseDate(timeStr, "yyyy-MM-dd hh-mm-ss");
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
}));
// 双流join
DataStream<Tuple3<String, Integer, Integer>> rsSource = greenSource.join(redSource).where(new KeySelector<Tuple3<String, Integer, String>, String>() {
@Override
public String getKey(Tuple3<String, Integer, String> tuple3) throws Exception {
return tuple3.f0;
}
}).equalTo(new KeySelector<Tuple3<String, Integer, String>, String>() {
@Override
public String getKey(Tuple3<String, Integer, String> tuple3) throws Exception {
return tuple3.f0;
}
// 滚动窗口
}).window(TumblingEventTimeWindows.of(Time.seconds(5)))
.apply(new JoinFunction<Tuple3<String, Integer, String>, Tuple3<String, Integer, String>, Tuple3<String, Integer, Integer>>() {
@Override
public Tuple3<String, Integer, Integer> join(Tuple3<String, Integer, String> first, Tuple3<String, Integer, String> second) throws Exception {
return Tuple3.of(first.f0, first.f1, second.f1);
}
});
redSource.print("红色的流:");
greenSource.print("绿色的流:");
rsSource.print("合并后的流:");
env.execute();
}
}
滑动窗口
package com.bigdata.day07;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.Duration;
import java.util.Date;
/**
* @基本功能: 演示join的滑动窗口
* @program:FlinkDemo
* @author: 闫哥
* @create:2024-05-20 09:11:13
**/
public class Demo02Join {
public static void main(String[] args) throws Exception {
//1. env-准备环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
// 将并行度设置为1,否则很难看到现象
env.setParallelism(1);
// 创建一个绿色的流
DataStreamSource<String> greenSource = env.socketTextStream("localhost", 8899);
// key,0,2021-03-26 12:09:00 将它变为三元组
SingleOutputStreamOperator<Tuple3<String, Integer, String>> greenDataStream = greenSource.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String value) throws Exception {
String[] arr = value.split(",");
return new Tuple3<>(arr[0], Integer.valueOf(arr[1]), arr[2]);
}
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
// 为什么这个地方的代码比之前要长,原因是以前获取的数据都是long类型,并且都是毫秒值
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> element, long recordTimestamp) {
// 指定你的数据中哪一个是时间戳,并且时间戳必须是long类型,必须是毫秒为单位的。
String time = element.f2; //2021-03-26 12:09:00
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {
Date date = sdf.parse(time);
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
})
);
// 创建一个橘色的流
DataStreamSource<String> orangeSource = env.socketTextStream("localhost", 9988);
// key,0,2021-03-26 12:09:00 将它变为三元组
SingleOutputStreamOperator<Tuple3<String, Integer, String>> orangeDataStream = orangeSource.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String value) throws Exception {
String[] arr = value.split(",");
return new Tuple3<>(arr[0], Integer.valueOf(arr[1]), arr[2]);
}
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
// 为什么这个地方的代码比之前要长,原因是以前获取的数据都是long类型,并且都是毫秒值
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> element, long recordTimestamp) {
// 指定你的数据中哪一个是时间戳,并且时间戳必须是long类型,必须是毫秒为单位的。
String time = element.f2; //2021-03-26 12:09:00
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
try {
Date date = sdf.parse(time);
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
})
);
//2. source-加载数据
//3. transformation-数据处理转换
DataStream<Tuple3<String, Integer, Integer>> resultStream = greenDataStream.join(orangeDataStream)
.where(tuple3 -> tuple3.f0)
.equalTo(tuple3 -> tuple3.f0)
// 滑动窗口
.window(SlidingEventTimeWindows.of(Time.seconds(5),Time.seconds(1)))
.apply(new JoinFunction<Tuple3<String, Integer, String>, Tuple3<String, Integer, String>, Tuple3<String, Integer, Integer>>() {
@Override
public Tuple3<String, Integer, Integer> join(Tuple3<String, Integer, String> first, Tuple3<String, Integer, String> second) throws Exception {
return Tuple3.of(first.f0, first.f1, second.f1);
}
});
//4. sink-数据输出
greenDataStream.print("绿色的流:");
orangeDataStream.print("橘色的流:");
resultStream.print("最终的结果:");
//5. execute-执行
env.execute();
}
}
CoGroup
1、优势:可以实现内连接,左连接,右连接
2、劣势:内存压力大
3、和上面的写法区别:将join换成coGroup,apply中实现的具体方法有区别
4、流程
stream.coGroup(otherStream)
.where(<KeySelector>)
.equalTo(<KeySelector>)
.window(<WindowAssigner>)
.apply(<CoGroupFunction>);
内连接
package com.bigdata.day07;
import org.apache.commons.lang3.time.DateUtils;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.CoGroupFunction;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import java.text.ParseException;
import java.time.Duration;
import java.util.Date;
/**
* 内连接
*/
public class _02_双流join_CoGroup_内连接 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 绿色的流
DataStreamSource<String> source = env.socketTextStream("localhost", 7777);
SingleOutputStreamOperator<Tuple3<String, Integer, String>> greenSource = source.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String line) throws Exception {
String[] split = line.split(",");
return Tuple3.of(split[0], Integer.valueOf(split[1]), split[2]);
}
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> tuple3, long recordTimestamp) {
String timeStr = tuple3.f2;
try {
Date date = DateUtils.parseDate(timeStr, "yyyy-MM-dd hh-mm-ss");
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
}));
// 红色的流
DataStreamSource<String> source2 = env.socketTextStream("localhost", 7778);
SingleOutputStreamOperator<Tuple3<String, Integer, String>> redSource = source2.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String line) throws Exception {
String[] split = line.split(",");
return Tuple3.of(split[0], Integer.valueOf(split[1]), split[2]);
}
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> tuple3, long recordTimestamp) {
String timeStr = tuple3.f2;
try {
Date date = DateUtils.parseDate(timeStr, "yyyy-MM-dd hh-mm-ss");
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
}));
// 连接
DataStream<Tuple3<String, String, String>> rsSource = greenSource.coGroup(redSource).where(new KeySelector<Tuple3<String, Integer, String>, String>() {
@Override
public String getKey(Tuple3<String, Integer, String> tuple3) throws Exception {
return tuple3.f0;
}
}).equalTo(new KeySelector<Tuple3<String, Integer, String>, String>() {
@Override
public String getKey(Tuple3<String, Integer, String> tuple3) throws Exception {
return tuple3.f0;
}
}).window(TumblingEventTimeWindows.of(Time.seconds(5))).apply(new CoGroupFunction<Tuple3<String, Integer, String>, Tuple3<String, Integer, String>, Tuple3<String, String, String>>() {
@Override
public void coGroup(Iterable<Tuple3<String, Integer, String>> first, Iterable<Tuple3<String, Integer, String>> second, Collector<Tuple3<String, String, String>> out) throws Exception {
for (Tuple3<String, Integer, String> firesTuple3 : first) {
for (Tuple3<String, Integer, String> secondTuple3 : second) {
out.collect(Tuple3.of(firesTuple3.f0,"green"+firesTuple3.f1,"red"+secondTuple3.f1));
}
}
}
});
redSource.print("红色的流:");
greenSource.print("绿色的流:");
rsSource.print("合并后的流:");
env.execute();
}
}
外连接
package com.bigdata.day07;
import org.apache.commons.lang3.time.DateUtils;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.CoGroupFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import java.text.ParseException;
import java.time.Duration;
import java.util.Date;
/**
* 外连接
*/
public class _03_双流join_CoGroup_外连接 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 绿色的流
DataStreamSource<String> source = env.socketTextStream("localhost", 7777);
SingleOutputStreamOperator<Tuple3<String, Integer, String>> greenSource = source.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String line) throws Exception {
String[] split = line.split(",");
return Tuple3.of(split[0], Integer.valueOf(split[1]), split[2]);
}
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> tuple3, long recordTimestamp) {
String timeStr = tuple3.f2;
try {
Date date = DateUtils.parseDate(timeStr, "yyyy-MM-dd hh-mm-ss");
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
}));
// 红色的流
DataStreamSource<String> source2 = env.socketTextStream("localhost", 7778);
SingleOutputStreamOperator<Tuple3<String, Integer, String>> redSource = source2.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String line) throws Exception {
String[] split = line.split(",");
return Tuple3.of(split[0], Integer.valueOf(split[1]), split[2]);
}
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> tuple3, long recordTimestamp) {
String timeStr = tuple3.f2;
try {
Date date = DateUtils.parseDate(timeStr, "yyyy-MM-dd hh-mm-ss");
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
}));
DataStream<Tuple3<String, String, String>> rsSource = greenSource.coGroup(redSource).where(new KeySelector<Tuple3<String, Integer, String>, String>() {
@Override
public String getKey(Tuple3<String, Integer, String> tuple3) throws Exception {
return tuple3.f0;
}
}).equalTo(new KeySelector<Tuple3<String, Integer, String>, String>() {
@Override
public String getKey(Tuple3<String, Integer, String> tuple3) throws Exception {
return tuple3.f0;
}
}).window(TumblingEventTimeWindows.of(Time.seconds(5))).apply(new CoGroupFunction<Tuple3<String, Integer, String>, Tuple3<String, Integer, String>, Tuple3<String, String, String>>() {
@Override
public void coGroup(Iterable<Tuple3<String, Integer, String>> first, Iterable<Tuple3<String, Integer, String>> second, Collector<Tuple3<String, String, String>> out) throws Exception {
// 内连接,左连接,右连接的区别只在这里面存在,两层循环
for (Tuple3<String, Integer, String> firesTuple3 : first) {
boolean isExist = false;
for (Tuple3<String, Integer, String> secondTuple3 : second) {
isExist = true;
out.collect(Tuple3.of(firesTuple3.f0,"green"+firesTuple3.f1,"red"+secondTuple3.f1));
}
if (!isExist){
out.collect(Tuple3.of(firesTuple3.f0,"green"+firesTuple3.f1,"red null"));
}
}
}
});
redSource.print("红色的流:");
greenSource.print("绿色的流:");
rsSource.print("合并后的流:");
env.execute();
}
}
Interval Join
1、Join以及CoGroup 原因是 Join和CoGroup是窗口Join,必须给定窗口
2、Interval Join不需要给窗口。Interval Join 必须先分组才能使用。
3、先对数据源进行keyBy
4、 外流.intervalJoin(内流)
.between(-2,2)
.process
between 左不包,右包
内部的流为下面的流(取单个值)
代码实现
package com.bigdata.day07;
import org.apache.commons.lang3.time.DateUtils;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.CoGroupFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import java.text.ParseException;
import java.time.Duration;
import java.util.Date;
public class _04_双流join_Interval_Join {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
//绿色的流
DataStreamSource<String> source = env.socketTextStream("localhost", 7777);
KeyedStream<Tuple3<String, Integer, String>, String> greenSource = source.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String line) throws Exception {
String[] split = line.split(",");
return Tuple3.of(split[0], Integer.valueOf(split[1]), split[2]);
}
// 水印
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> tuple3, long recordTimestamp) {
String timeStr = tuple3.f2;
try {
Date date = DateUtils.parseDate(timeStr, "yyyy-MM-dd hh-mm-ss");
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
// keyBy
})).keyBy(new KeySelector<Tuple3<String, Integer, String>, String>() {
@Override
public String getKey(Tuple3<String, Integer, String> tuple3) throws Exception {
return tuple3.f0;
}
});
// 红色的流
DataStreamSource<String> source2 = env.socketTextStream("localhost", 7778);
KeyedStream<Tuple3<String, Integer, String>, String> redSource = source2.map(new MapFunction<String, Tuple3<String, Integer, String>>() {
@Override
public Tuple3<String, Integer, String> map(String line) throws Exception {
String[] split = line.split(",");
return Tuple3.of(split[0], Integer.valueOf(split[1]), split[2]);
}
// 水印
}).assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, Integer, String>>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, Integer, String>>() {
@Override
public long extractTimestamp(Tuple3<String, Integer, String> tuple3, long recordTimestamp) {
String timeStr = tuple3.f2;
try {
Date date = DateUtils.parseDate(timeStr, "yyyy-MM-dd hh-mm-ss");
return date.getTime();
} catch (ParseException e) {
throw new RuntimeException(e);
}
}
// 分组
})).keyBy(new KeySelector<Tuple3<String, Integer, String>, String>() {
@Override
public String getKey(Tuple3<String, Integer, String> tuple3) throws Exception {
return tuple3.f0;
}
});
// 实现
SingleOutputStreamOperator<String> rsSource = greenSource
.intervalJoin(redSource)
.between(Time.seconds(-2), Time.seconds(2))
.process(new ProcessJoinFunction<Tuple3<String, Integer, String>, Tuple3<String, Integer, String>, String>() {
@Override
public void processElement(Tuple3<String, Integer, String> left, Tuple3<String, Integer, String> right, ProcessJoinFunction<Tuple3<String, Integer, String>, Tuple3<String, Integer, String>, String>.Context ctx, Collector<String> out) throws Exception {
out.collect("left中的key:"+left.f0+",value="+left.f1+",time="+left.f2+",right中的key:"+right.f0+",value="+right.f1+",time="+right.f2);
}
});
redSource.print("红色的流:");
greenSource.print("绿色的流:");
rsSource.print("合并后的流:");
env.execute();
/**
* 红色的为下面的流
* 范围:
* 假如现在是10
* 9 10 11 12
*/
}
}
原文地址:https://blog.csdn.net/weixin_52642840/article/details/144183923
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!