1111111
from sklearn.datasets import load_iris
iris=load_iris()
data=iris["data"]
label=iris["target"]
print(len(set(label)))
import matplotlib.pyplot as plt
plt.scatter(data[:,0],data[:,1])
plt.show()
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(data,label,test_size=0.2)
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler().fit(x_train)
scaler_x_train=scaler.transform(x_train)
scaler_x_test=scaler.transform(x_test)
from sklearn.tree import DecisionTreeClassifier
model=DecisionTreeClassifier()
model.fit(scaler_x_train,y_train)
from sklearn.metrics import classification_report
pre=model.predict(scaler_x_test)
res=classification_report(y_test,pre)
print(res)
原文地址:https://blog.csdn.net/m0_74921758/article/details/144325919
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!