自学内容网 自学内容网

linux 双向链表

kimi 输出双向链表

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// 定义双向链表节点结构体
struct list_head {
    struct list_head *next, *prev;
};

// 初始化双向链表头节点
#define LIST_HEAD_INIT(name) { &(name), &(name) }

// 定义双向链表头节点
#define LIST_HEAD(name) \
    struct list_head name = LIST_HEAD_INIT(name)

// 初始化双向链表头节点的函数
static inline void INIT_LIST_HEAD(struct list_head *list)
{
    list->next = list;
    list->prev = list;
}

// 内部函数,用于将新节点插入到指定位置
static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next)
{
    next->prev = new;
    new->next = next;
    new->prev = prev;
    prev->next = new;
}

// 将新节点添加到链表头部
static inline void list_add(struct list_head *new, struct list_head *head)
{
    __list_add(new, head, head->next);
}

// 将新节点添加到链表尾部
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
    __list_add(new, head->prev, head);
}

// 内部函数,用于删除节点的连接关系
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
    next->prev = prev;
    prev->next = next;
}

// 删除链表中的节点
static inline void list_del(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    entry->next = NULL;
    entry->prev = NULL;
}

// 判断链表是否为空
static inline int list_empty(const struct list_head *head)
{
    return head->next == head;
}

// 获取链表中第一个节点的指针
#define list_first_entry(ptr, type, member) \
    list_entry((ptr)->next, type, member)

// 获取链表中最后一个节点的指针
#define list_last_entry(ptr, type, member) \
    list_entry((ptr)->prev, type, member)

// 获取当前节点的下一个节点的指针
#define list_next_entry(pos, member) \
    list_entry((pos)->member.next, typeof(*(pos)), member)

// 获取当前节点的上一个节点的指针
#define list_prev_entry(pos, member) \
    list_entry((pos)->member.prev, typeof(*(pos)), member)

// 根据成员变量的指针获取包含该成员变量的结构体的指针
#define list_entry(ptr, type, member) \
    ((type *)((char *)(ptr) - (unsigned long)(&((type *)0)->member)))

// 遍历双向链表的宏
#define LIST_FOR_EACH_ENTRY(pos, head, member) \
    for (pos = list_first_entry(head, typeof(*pos), member); \
         &pos->member != (head); \
         pos = list_next_entry(pos, member))

// 示例:定义一个学生结构体,包含链表节点
struct student {
    int id;
    char name[20];
    struct list_head list;
};

int main() {
    // 初始化链表头节点
    LIST_HEAD(students_list);

    // 创建并初始化学生节点
    struct student stu1 = {1, "Alice", LIST_HEAD_INIT(stu1.list)};
    struct student stu2 = {2, "Bob", LIST_HEAD_INIT(stu2.list)};
    struct student stu3 = {3, "Charlie", LIST_HEAD_INIT(stu3.list)};

    // 将学生节点添加到链表中
    list_add(&stu1.list, &students_list);
    list_add(&stu2.list, &students_list);
    list_add_tail(&stu3.list, &students_list);

    // 遍历链表并打印学生信息
    struct student *pos;
    LIST_FOR_EACH_ENTRY(pos, &students_list, list) {
        printf("Student ID: %d, Name: %s\n", pos->id, pos->name);
    }

    // 删除链表中的节点
    list_del(&stu2.list);

    // 再次遍历链表并打印学生信息
    printf("After deleting stu2:\n");
    LIST_FOR_EACH_ENTRY(pos, &students_list, list) {
        printf("Student ID: %d, Name: %s\n", pos->id, pos->name);
    }

    return 0;
}

下面代码摘自 linux 内核代码 v6.7.1 LXR linux/include/linux/list.h

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

#include <linux/container_of.h>
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/poison.h>
#include <linux/const.h>

#include <asm/barrier.h>

/*
 * Circular doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
        struct list_head name = LIST_HEAD_INIT(name)

/**
 * INIT_LIST_HEAD - Initialize a list_head structure
 * @list: list_head structure to be initialized.
 *
 * Initializes the list_head to point to itself.  If it is a list header,
 * the result is an empty list.
 */
static inline void INIT_LIST_HEAD(struct list_head *list)
{
        WRITE_ONCE(list->next, list);
        WRITE_ONCE(list->prev, list);
}

#ifdef CONFIG_LIST_HARDENED

#ifdef CONFIG_DEBUG_LIST
# define __list_valid_slowpath
#else
# define __list_valid_slowpath __cold __preserve_most
#endif

/*
 * Performs the full set of list corruption checks before __list_add().
 * On list corruption reports a warning, and returns false.
 */
extern bool __list_valid_slowpath __list_add_valid_or_report(struct list_head *new,
                                                             struct list_head *prev,
                                                             struct list_head *next);

/*
 * Performs list corruption checks before __list_add(). Returns false if a
 * corruption is detected, true otherwise.
 *
 * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
 * inline to catch non-faulting corruptions, and only if a corruption is
 * detected calls the reporting function __list_add_valid_or_report().
 */
static __always_inline bool __list_add_valid(struct list_head *new,
                                             struct list_head *prev,
                                             struct list_head *next)
{
        bool ret = true;

        if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
                /*
                 * With the hardening version, elide checking if next and prev
                 * are NULL, since the immediate dereference of them below would
                 * result in a fault if NULL.
                 *
                 * With the reduced set of checks, we can afford to inline the
                 * checks, which also gives the compiler a chance to elide some
                 * of them completely if they can be proven at compile-time. If
                 * one of the pre-conditions does not hold, the slow-path will
                 * show a report which pre-condition failed.
                 */
                if (likely(next->prev == prev && prev->next == next && new != prev && new != next))
                        return true;
                ret = false;
        }

        ret &= __list_add_valid_or_report(new, prev, next);
        return ret;
}

/*
 * Performs the full set of list corruption checks before __list_del_entry().
 * On list corruption reports a warning, and returns false.
 */
extern bool __list_valid_slowpath __list_del_entry_valid_or_report(struct list_head *entry);

/*
 * Performs list corruption checks before __list_del_entry(). Returns false if a
 * corruption is detected, true otherwise.
 *
 * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
 * inline to catch non-faulting corruptions, and only if a corruption is
 * detected calls the reporting function __list_del_entry_valid_or_report().
 */
static __always_inline bool __list_del_entry_valid(struct list_head *entry)
{
        bool ret = true;

        if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
                struct list_head *prev = entry->prev;
                struct list_head *next = entry->next;

                /*
                 * With the hardening version, elide checking if next and prev
                 * are NULL, LIST_POISON1 or LIST_POISON2, since the immediate
                 * dereference of them below would result in a fault.
                 */
                if (likely(prev->next == entry && next->prev == entry))
                        return true;
                ret = false;
        }

        ret &= __list_del_entry_valid_or_report(entry);
        return ret;
}
#else
static inline bool __list_add_valid(struct list_head *new,
                                struct list_head *prev,
                                struct list_head *next)
{
        return true;
}
static inline bool __list_del_entry_valid(struct list_head *entry)
{
        return true;
}
#endif

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new,
                              struct list_head *prev,
                              struct list_head *next)
{
        if (!__list_add_valid(new, prev, next))
                return;

        next->prev = new;
        new->next = next;
        new->prev = prev;
        WRITE_ONCE(prev->next, new);
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
        __list_add(new, head, head->next);
}


/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
        __list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
        next->prev = prev;
        WRITE_ONCE(prev->next, next);
}

/*
 * Delete a list entry and clear the 'prev' pointer.
 *
 * This is a special-purpose list clearing method used in the networking code
 * for lists allocated as per-cpu, where we don't want to incur the extra
 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
 * needs to check the node 'prev' pointer instead of calling list_empty().
 */
static inline void __list_del_clearprev(struct list_head *entry)
{
        __list_del(entry->prev, entry->next);
        entry->prev = NULL;
}

static inline void __list_del_entry(struct list_head *entry)
{
        if (!__list_del_entry_valid(entry))
                return;

        __list_del(entry->prev, entry->next);
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
static inline void list_del(struct list_head *entry)
{
        __list_del_entry(entry);
        entry->next = LIST_POISON1;
        entry->prev = LIST_POISON2;
}

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
                                struct list_head *new)
{
        new->next = old->next;
        new->next->prev = new;
        new->prev = old->prev;
        new->prev->next = new;
}

/**
 * list_replace_init - replace old entry by new one and initialize the old one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace_init(struct list_head *old,
                                     struct list_head *new)
{
        list_replace(old, new);
        INIT_LIST_HEAD(old);
}

/**
 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
 * @entry1: the location to place entry2
 * @entry2: the location to place entry1
 */
static inline void list_swap(struct list_head *entry1,
                             struct list_head *entry2)
{
        struct list_head *pos = entry2->prev;

        list_del(entry2);
        list_replace(entry1, entry2);
        if (pos == entry1)
                pos = entry2;
        list_add(entry1, pos);
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
        __list_del_entry(entry);
        INIT_LIST_HEAD(entry);
}

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
        __list_del_entry(list);
        list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
                                  struct list_head *head)
{
        __list_del_entry(list);
        list_add_tail(list, head);
}

/**
 * list_bulk_move_tail - move a subsection of a list to its tail
 * @head: the head that will follow our entry
 * @first: first entry to move
 * @last: last entry to move, can be the same as first
 *
 * Move all entries between @first and including @last before @head.
 * All three entries must belong to the same linked list.
 */
static inline void list_bulk_move_tail(struct list_head *head,
                                       struct list_head *first,
                                       struct list_head *last)
{
        first->prev->next = last->next;
        last->next->prev = first->prev;

        head->prev->next = first;
        first->prev = head->prev;

        last->next = head;
        head->prev = last;
}

/**
 * list_is_first -- tests whether @list is the first entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_first(const struct list_head *list, const struct list_head *head)
{
        return list->prev == head;
}

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list, const struct list_head *head)
{
        return list->next == head;
}

/**
 * list_is_head - tests whether @list is the list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_head(const struct list_head *list, const struct list_head *head)
{
        return list == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
        return READ_ONCE(head->next) == head;
}

/**
 * list_del_init_careful - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 *
 * This is the same as list_del_init(), except designed to be used
 * together with list_empty_careful() in a way to guarantee ordering
 * of other memory operations.
 *
 * Any memory operations done before a list_del_init_careful() are
 * guaranteed to be visible after a list_empty_careful() test.
 */
static inline void list_del_init_careful(struct list_head *entry)
{
        __list_del_entry(entry);
        WRITE_ONCE(entry->prev, entry);
        smp_store_release(&entry->next, entry);
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
        struct list_head *next = smp_load_acquire(&head->next);
        return list_is_head(next, head) && (next == READ_ONCE(head->prev));
}

/**
 * list_rotate_left - rotate the list to the left
 * @head: the head of the list
 */
static inline void list_rotate_left(struct list_head *head)
{
        struct list_head *first;

        if (!list_empty(head)) {
                first = head->next;
                list_move_tail(first, head);
        }
}

/**
 * list_rotate_to_front() - Rotate list to specific item.
 * @list: The desired new front of the list.
 * @head: The head of the list.
 *
 * Rotates list so that @list becomes the new front of the list.
 */
static inline void list_rotate_to_front(struct list_head *list,
                                        struct list_head *head)
{
        /*
         * Deletes the list head from the list denoted by @head and
         * places it as the tail of @list, this effectively rotates the
         * list so that @list is at the front.
         */
        list_move_tail(head, list);
}

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
        return !list_empty(head) && (head->next == head->prev);
}

static inline void __list_cut_position(struct list_head *list,
                struct list_head *head, struct list_head *entry)
{
        struct list_head *new_first = entry->next;
        list->next = head->next;
        list->next->prev = list;
        list->prev = entry;
        entry->next = list;
        head->next = new_first;
        new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *      and if so we won't cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
                struct list_head *head, struct list_head *entry)
{
        if (list_empty(head))
                return;
        if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
                return;
        if (list_is_head(entry, head))
                INIT_LIST_HEAD(list);
        else
                __list_cut_position(list, head, entry);
}

/**
 * list_cut_before - cut a list into two, before given entry
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *
 * This helper moves the initial part of @head, up to but
 * excluding @entry, from @head to @list.  You should pass
 * in @entry an element you know is on @head.  @list should
 * be an empty list or a list you do not care about losing
 * its data.
 * If @entry == @head, all entries on @head are moved to
 * @list.
 */
static inline void list_cut_before(struct list_head *list,
                                   struct list_head *head,
                                   struct list_head *entry)
{
        if (head->next == entry) {
                INIT_LIST_HEAD(list);
                return;
        }
        list->next = head->next;
        list->next->prev = list;
        list->prev = entry->prev;
        list->prev->next = list;
        head->next = entry;
        entry->prev = head;
}

static inline void __list_splice(const struct list_head *list,
                                 struct list_head *prev,
                                 struct list_head *next)
{
        struct list_head *first = list->next;
        struct list_head *last = list->prev;

        first->prev = prev;
        prev->next = first;

        last->next = next;
        next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
                                struct list_head *head)
{
        if (!list_empty(list))
                __list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
                                struct list_head *head)
{
        if (!list_empty(list))
                __list_splice(list, head->prev, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
                                    struct list_head *head)
{
        if (!list_empty(list)) {
                __list_splice(list, head, head->next);
                INIT_LIST_HEAD(list);
        }
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
                                         struct list_head *head)
{
        if (!list_empty(list)) {
                __list_splice(list, head->prev, head);
                INIT_LIST_HEAD(list);
        }
}

/**
 * list_entry - get the struct for this entry
 * @ptr:        the &struct list_head pointer.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_head within the struct.
 */
#define list_entry(ptr, type, member) \
        container_of(ptr, type, member)

/**
 * list_first_entry - get the first element from a list
 * @ptr:        the list head to take the element from.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) \
        list_entry((ptr)->next, type, member)

/**
 * list_last_entry - get the last element from a list
 * @ptr:        the list head to take the element from.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_last_entry(ptr, type, member) \
        list_entry((ptr)->prev, type, member)

/**
 * list_first_entry_or_null - get the first element from a list
 * @ptr:        the list head to take the element from.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_head within the struct.
 *
 * Note that if the list is empty, it returns NULL.
 */
#define list_first_entry_or_null(ptr, type, member) ({ \
        struct list_head *head__ = (ptr); \
        struct list_head *pos__ = READ_ONCE(head__->next); \
        pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
})

/**
 * list_next_entry - get the next element in list
 * @pos:        the type * to cursor
 * @member:     the name of the list_head within the struct.
 */
#define list_next_entry(pos, member) \
        list_entry((pos)->member.next, typeof(*(pos)), member)

/**
 * list_next_entry_circular - get the next element in list
 * @pos:        the type * to cursor.
 * @head:       the list head to take the element from.
 * @member:     the name of the list_head within the struct.
 *
 * Wraparound if pos is the last element (return the first element).
 * Note, that list is expected to be not empty.
 */
#define list_next_entry_circular(pos, head, member) \
        (list_is_last(&(pos)->member, head) ? \
        list_first_entry(head, typeof(*(pos)), member) : list_next_entry(pos, member))

/**
 * list_prev_entry - get the prev element in list
 * @pos:        the type * to cursor
 * @member:     the name of the list_head within the struct.
 */
#define list_prev_entry(pos, member) \
        list_entry((pos)->member.prev, typeof(*(pos)), member)

/**
 * list_prev_entry_circular - get the prev element in list
 * @pos:        the type * to cursor.
 * @head:       the list head to take the element from.
 * @member:     the name of the list_head within the struct.
 *
 * Wraparound if pos is the first element (return the last element).
 * Note, that list is expected to be not empty.
 */
#define list_prev_entry_circular(pos, head, member) \
        (list_is_first(&(pos)->member, head) ? \
        list_last_entry(head, typeof(*(pos)), member) : list_prev_entry(pos, member))

/**
 * list_for_each        -       iterate over a list
 * @pos:        the &struct list_head to use as a loop cursor.
 * @head:       the head for your list.
 */
#define list_for_each(pos, head) \
        for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)

/**
 * list_for_each_reverse - iterate backwards over a list
 * @pos:        the &struct list_head to use as a loop cursor.
 * @head:       the head for your list.
 */
#define list_for_each_reverse(pos, head) \
        for (pos = (head)->prev; pos != (head); pos = pos->prev)

/**
 * list_for_each_rcu - Iterate over a list in an RCU-safe fashion
 * @pos:        the &struct list_head to use as a loop cursor.
 * @head:       the head for your list.
 */
#define list_for_each_rcu(pos, head)              \
        for (pos = rcu_dereference((head)->next); \
             !list_is_head(pos, (head)); \
             pos = rcu_dereference(pos->next))

/**
 * list_for_each_continue - continue iteration over a list
 * @pos:        the &struct list_head to use as a loop cursor.
 * @head:       the head for your list.
 *
 * Continue to iterate over a list, continuing after the current position.
 */
#define list_for_each_continue(pos, head) \
        for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)

/**
 * list_for_each_prev   -       iterate over a list backwards
 * @pos:        the &struct list_head to use as a loop cursor.
 * @head:       the head for your list.
 */
#define list_for_each_prev(pos, head) \
        for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:        the &struct list_head to use as a loop cursor.
 * @n:          another &struct list_head to use as temporary storage
 * @head:       the head for your list.
 */
#define list_for_each_safe(pos, n, head) \
        for (pos = (head)->next, n = pos->next; \
             !list_is_head(pos, (head)); \
             pos = n, n = pos->next)

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:        the &struct list_head to use as a loop cursor.
 * @n:          another &struct list_head to use as temporary storage
 * @head:       the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) \
        for (pos = (head)->prev, n = pos->prev; \
             !list_is_head(pos, (head)); \
             pos = n, n = pos->prev)

/**
 * list_count_nodes - count nodes in the list
 * @head:       the head for your list.
 */
static inline size_t list_count_nodes(struct list_head *head)
{
        struct list_head *pos;
        size_t count = 0;

        list_for_each(pos, head)
                count++;

        return count;
}

/**
 * list_entry_is_head - test if the entry points to the head of the list
 * @pos:        the type * to cursor
 * @head:       the head for your list.
 * @member:     the name of the list_head within the struct.
 */
#define list_entry_is_head(pos, head, member)                           \
        (&pos->member == (head))

/**
 * list_for_each_entry  -       iterate over list of given type
 * @pos:        the type * to use as a loop cursor.
 * @head:       the head for your list.
 * @member:     the name of the list_head within the struct.
 */
#define list_for_each_entry(pos, head, member)                          \
        for (pos = list_first_entry(head, typeof(*pos), member);        \
             !list_entry_is_head(pos, head, member);                    \
             pos = list_next_entry(pos, member))


原文地址:https://blog.csdn.net/LIZHUOLONG1/article/details/145147877

免责声明:本站文章内容转载自网络资源,如侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!