wordembedding
# 1.导入依赖包 import torch import re import jieba from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import time # 2.获取数据集并构建词表 def build_vocab(): # 数据集位置 file_name = 'data/jaychou_lyrics.txt' # 分词结果存储位置 unique_words = [] all_words = [] # 遍历数据集中的每一行文本 for line in open(file_name, 'r'): # 使用jieba分词,分割结果是一个列表 words = jieba.lcut(line) # print(words) # 所有的分词结果存储到all_sentences,其中包含重复的词组 all_words.append(words) # 遍历分词结果,去重后存储到unique_words for word in words: if word not in unique_words: unique_words.append(word) # 语料中词的数量 word_count = len(unique_words) # 词到索引映射 word_to_index = {word: idx for idx, word in enumerate(unique_words)} # 词表索引表示 corpus_idx = [] # 遍历每一行的分词结果 for words in all_words: temp = [] # 获取每一行的词,并获取相应的索引 for word in words: temp.append(word_to_index[word]) # 在每行词之间添加空格隔开 temp.append(word_to_index[' ']) # 获取当前文档中每个词对应的索引 corpus_idx.extend(temp) return unique_words, word_to_index, word_count, corpus_idx # 3.构建数据集对象 class LyricsDataset(torch.utils.data.Dataset): def __init__(self, corpus_idx, num_chars): # 文档数据中词的索引 self.corpus_idx = corpus_idx # 每个句子中词的个数 self.num_chars = num_chars # 词的数量 self.word_count = len(self.corpus_idx) # 句子数量 self.number = self.word_count // self.num_chars def __len__(self): # 返回句子数量 return self.number def __getitem__(self, idx): # idx指词的索引,并将其修正索引值到文档的范围里面 start = min(max(idx, 0), self.word_count - self.num_chars - 2) # print(self.word_count - self.num_chars - 2) # 输入值 x = self.corpus_idx[start: start + self.num_chars] # 网络预测结果(目标值) y = self.corpus_idx[start + 1: start + 1 + self.num_chars] # 返回结果 return torch.tensor(x), torch.tensor(y) # 4.模型构建 class TextGenerator(nn.Module): def __init__(self, word_count, num_layers=2): super(TextGenerator, self).__init__() self.num_layer = num_layers # 初始化词嵌入层: 词向量的维度为128 self.ebd = nn.Embedding(word_count, 128) # 循环网络层: 词向量维度 128, 隐藏向量维度 128, 网络层数2 self.rnn = nn.RNN(128, 128, self.num_layer) # 输出层: 特征向量维度128与隐藏向量维度相同,词表中词的个数 self.out = nn.Linear(128, word_count) def forward(self, inputs, hidden): # 输出维度: (batch, seq_len,词向量维度 128) embed = self.ebd(inputs) # 修改维度: (seq_len, batch,词向量维度 128) output, hidden = self.rnn(embed.transpose(0, 1), hidden) # 输入维度: (seq_len*batch,词向量维度 ) 输出维度: (seq_len*batch, 128) output = self.out(output.reshape((-1, output.shape[-1]))) # 网络输出结果 return output, hidden def init_hidden(self, bs=2): # 隐藏层的初始化:[网络层数, batch, 隐藏层向量维度] return torch.zeros(self.num_layer, bs, 128) # 5.模型训练 def train(batch_size=5, num_layers=2): # 构建词典 index_to_word, word_to_index, word_count, corpus_idx = build_vocab() # 数据集 lyrics = LyricsDataset(corpus_idx, 32) # 初始化模型 model = TextGenerator(word_count, num_layers=num_layers) # 损失函数 criterion = nn.CrossEntropyLoss() # 优化方法 optimizer = optim.Adam(model.parameters(), lr=1e-3) # 训练轮数 epoch = 10 for epoch_idx in range(epoch): # 数据加载器 lyrics_dataloader = DataLoader(lyrics, shuffle=True, batch_size=batch_size, drop_last=True) # 训练时间 start = time.time() iter_num = 0 # 迭代次数 # 训练损失 total_loss = 0.0 # 遍历数据集 for x, y in lyrics_dataloader: # 隐藏状态的初始化 hidden = model.init_hidden(bs=x.size(0)) # hidden = model.init_hidden(bs=batch_size) # 模型计算 output, hidden = model(x, hidden) # 计算损失 # y:[batch,seq_len]->[seq_len,batch]->[seq_len*batch] y = torch.transpose(y, 0, 1).contiguous().view(-1) loss = criterion(output, y) optimizer.zero_grad() loss.backward() optimizer.step() iter_num += 1 # 迭代次数加1 total_loss += loss.item() # 打印训练信息 print('epoch %3s loss: %.5f time %.2f' % (epoch_idx + 1, total_loss / iter_num, time.time() - start)) # 模型存储 torch.save(model.state_dict(), 'data/lyrics_model_%d.pth' % epoch) # 6.模型预测 def predict(start_word, sentence_length, batch_size=1): # 构建词典 index_to_word, word_to_index, word_count, _ = build_vocab() # 构建模型 model = TextGenerator(word_count) # 加载参数 model.load_state_dict(torch.load('data/lyrics_model_10.pth')) # 隐藏状态 hidden = model.init_hidden(bs=batch_size) # 将起始词转换为索引 word_idx = word_to_index[start_word] # 产生的词的索引存放位置 generate_sentence = [word_idx] temp_pre = [] # 遍历到句子长度,获取每一个词 for _ in range(sentence_length): # 模型预测 output, hidden = model(torch.tensor([[word_idx]]), hidden) # 获取预测结果 word_idx = torch.argmax(output) generate_sentence.append(word_idx) # 根据产生的索引获取对应的词,并进行打印 for idx in generate_sentence: print(index_to_word[idx], end='') if __name__ == "__main__": # 获取数据 unique_words, word_to_index, word_count, corpus_idx = build_vocab() # print("词的数量:\n", word_count) # print("去重后的词:\n", unique_words) # print("每个词的索引:\n", word_to_index) # print("当前文档中每个词对应的索引:\n", corpus_idx) # print("语料库总长度:", len(corpus_idx)) # 数据获取实例化 dataset = LyricsDataset(corpus_idx, 5) # x, y = dataset.__getitem__(0) # number = dataset.__len__() # print("网络输入值:", x) # print("目标值:", y) # print("句子个数", number) # 模型训练 # train(batch_size=10, num_layers=5) # 模型预测 predict("温柔", 100, batch_size=5)
原文地址:https://blog.csdn.net/weixin_43147086/article/details/144039494
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!