自学内容网 自学内容网

[LeetCode] 1137. 第N个泰波那契数

题目描述:

泰波那契序列 Tn 定义如下: 

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:

输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

示例 2:

输入:n = 25
输出:1389537

提示:

  • 0 <= n <= 37
  • 答案保证是一个 32 位整数,即 answer <= 2^31 - 1

题目链接:

. - 力扣(LeetCode)

解题主要思路:

妥妥的动态规划,需要注意的是泰波那契数是从0开始,因此第n个泰波那契数,我们需要开的空间是n+1个。

不过,做完后发现,我们始终是只需要四个int变量,因此我们可以采用滚动数组的方式来进行空间优化。

解题代码:

(非优化版本)

class Solution {
public:
    int tribonacci(int n) {
        if (n == 0) return 0;
        if (n == 1 || n == 2) return 1;
        vector<int> dp(n+1);  // dp表
        dp[0] = 0, dp[1] = dp[2] = 1;  // 初始化
        for (int i = 3; i < n+1; ++i) {
            dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
        }
        return dp[n];
    }
};

(空间优化 -- 滚动数组版本)

class Solution {
public:
    int tribonacci(int n) {
        if (n == 0) return 0;
        if (n == 1 || n == 2) return 1;
        int a, b, c, dst;  // 四个int类型变量来代替dp表
        a = 0, b = c = 1;  // 初始化
        for (int i = 3; i < n+1; ++i) {
            dst = a + b + c;
            a = b, b = c, c = dst;
        }
        return dst;
    }
};


原文地址:https://blog.csdn.net/weixin_65043441/article/details/143466063

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!