自学内容网 自学内容网

交流稳定工作点基于Taylor级数展开的增量线性化推导过程

对于一个非线性函数

i = u + 1 3 u 3 i=u+\frac{1}{3} u^3 i=u+31u3

在稳态工作点 u a 0 u_{a0} ua0下,函数 f ( u ) f(u) f(u)的泰勒展开公式如下:


泰勒展开公式

泰勒展开公式为:
f ( u ) = f ( u a 0 ) + f ′ ( u a 0 ) ( u − u a 0 ) + f ′ ′ ( u a 0 ) 2 ! ( u − u a 0 ) 2 + f ( 3 ) ( u a 0 ) 3 ! ( u − u a 0 ) 3 + ⋯ f(u)=f(u_{a0})+f'(u_{a0})(u-u_{a0})+\frac{f''(u_{a0})}{2!}(u-u_{a0})^2+\frac{f^{(3)}(u_{a0})}{3!}(u-u_{a0})^3+\cdots f(u)=f(ua0)+f(ua0)(uua0)+2!f′′(ua0)(uua0)2+3!f(3)(ua0)(uua0)3+

这里, f ( u ) = u + 1 3 u 3 f(u)=u+\frac{1}{3}u^3 f(u)=u+31u3


计算导数

  1. 原函数:
    f ( u ) = u + 1 3 u 3 f(u)=u+\frac{1}{3}u^3 f(u)=u+31u3

  2. 一阶导数:
    f ′ ( u ) = 1 + u 2 f'(u)=1+u^2 f(u)=1+u2

  3. 二阶导数:
    f ′ ′ ( u ) = 2 u f''(u)=2u f′′(u)=2u

  4. 三阶导数:
    f ( 3 ) ( u ) = 2 f^{(3)}(u)=2 f(3)(u)=2

  5. 四阶及以上导数:
    f ( 4 ) ( u ) = 0 f^{(4)}(u)=0 f(4)(u)=0

各项在 u = u a 0 u=u_{a0} u=ua0处的值

  1. 函数值:
    f ( u a 0 ) = u a 0 + 1 3 u a 0 3 f(u_{a0})=u_{a0}+\frac{1}{3}u_{a0}^3 f(ua0)=ua0+31ua03

  2. 一阶导数值:
    f ′ ( u a 0 ) = 1 + u a 0 2 f'(u_{a0})=1+u_{a0}^2 f(ua0)=1+ua02

  3. 二阶导数值:
    f ′ ′ ( u a 0 ) = 2 u a 0 f''(u_{a0})=2u_{a0} f′′(ua0)=2ua0

  4. 三阶导数值:
    f ( 3 ) ( u a 0 ) = 2 f^{(3)}(u_{a0})=2 f(3)(ua0)=2


泰勒展开式

将上述结果代入泰勒展开公式:
f ( u ) = f ( u a 0 ) + f ′ ( u a 0 ) ( u − u a 0 ) + f ′ ′ ( u a 0 ) 2 ! ( u − u a 0 ) 2 + f ( 3 ) ( u a 0 ) 3 ! ( u − u a 0 ) 3 f(u)=f(u_{a0})+f'(u_{a0})(u-u_{a0})+\frac{f''(u_{a0})}{2!}(u-u_{a0})^2+\frac{f^{(3)}(u_{a0})}{3!}(u-u_{a0})^3 f(u)=f(ua0)+f(ua0)(uua0)+2!f′′(ua0)(uua0)2+3!f(3)(ua0)(uua0)3

具体形式为:
f ( u ) = ( u a 0 + 1 3 u a 0 3 ) + ( 1 + u a 0 2 ) ( u − u a 0 ) + 1 2 ( 2 u a 0 ) ( u − u a 0 ) 2 + 1 6 ( 2 ) ( u − u a 0 ) 3 f(u)=\left(u_{a0}+\frac{1}{3}u_{a0}^3\right)+\left(1+u_{a0}^2\right)(u-u_{a0})+\frac{1}{2}(2u_{a0})(u-u_{a0})^2+\frac{1}{6}(2)(u-u_{a0})^3 f(u)=(ua0+31ua03)+(1+ua02)(uua0)+21(2ua0)(uua0)2+61(2)(uua0)3

化简后为:
f ( u ) = u a 0 + 1 3 u a 0 3 + ( 1 + u a 0 2 ) ( u − u a 0 ) + u a 0 ( u − u a 0 ) 2 + 1 3 ( u − u a 0 ) 3 f(u)=u_{a0}+\frac{1}{3}u_{a0}^3+(1+u_{a0}^2)(u-u_{a0})+u_{a0}(u-u_{a0})^2+\frac{1}{3}(u-u_{a0})^3 f(u)=ua0+31ua03+(1+ua02)(uua0)+ua0(uua0)2+31(uua0)3


结果解释

  • 第一项 f ( u a 0 ) f(u_{a0}) f(ua0),表示在稳态工作点的函数值;
  • 第二项:线性项,反映输入 u u u偏离稳态点的直接影响;
  • 第三项:二次项,描述非线性特性;
  • 第四项:三次项,进一步捕捉更高阶非线性效应。

正序激励

A相交流稳定工作点基于Taylor级数展开的增量线性化推导过程

假设 u = u a 0 + Δ u a u=u_{\mathrm{a} 0}+\Delta u_{\mathrm{a}} u=ua0+Δua

{ u a 0 = A 0 cos ⁡ ω 0 t Δ u a = Δ u f = δ cos ⁡ 2 π f t = δ cos ⁡ ω t \left\{\begin{array}{l} u_{\mathrm{a} 0}=A_0 \cos \omega_0 t \\ \Delta u_{\mathrm{a}}=\Delta u_{\mathrm{f}}=\delta \cos 2 \pi f t=\delta \cos \omega t \end{array}\right. {ua0=A0cosω0tΔua=Δuf=δcos2πft=δcosωt

对于非线性函数有:

i a = u a + 1 3 u a 3 = A 0 cos ⁡ ( ω 0 t ) + δ cos ⁡ ( ω t ) + 1 3 [ A 0 cos ⁡ ( ω 0 t ) + δ cos ⁡ ( ω t ) ] 3 i_{\mathrm{a}}=u_{\mathrm{a}}+\frac{1}{3} u_{\mathrm{a}}^3=A_0 \cos \left(\omega_0 t\right)+\delta \cos (\omega t)+\frac{1}{3}\left[A_0 \cos \left(\omega_0 t\right)+\delta \cos (\omega t)\right]^3 ia=ua+31ua3=A0cos(ω0t)+δcos(ωt)+31[A0cos(ω0t)+δcos(ωt)]3

按照Taylor级数展开公式:

f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ( 3 ) ( a ) 3 ! ( x − a ) 3 + ⋯ = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n f(x)=f(a)+f(a)(xa)+2!f′′(a)(xa)2+3!f(3)(a)(xa)3+=n=0n!f(n)(a)(xa)n

i a = { [ A 0 cos ⁡ ω 0 t + 1 3 ( A 0 cos ⁡ ω 0 t ) 3 ] + [ 1 + ( A 0 cos ⁡ ω 0 t ) 2 ] ( δ cos ⁡ ω t ) + ( A 0 cos ⁡ ω 0 t ) ( δ cos ⁡ ω t ) 2 + 1 3 ( δ cos ⁡ ω t ) 3 } i_{\mathrm{a}}=\left\{\begin{array}{l} {\left[A_0 \cos \omega_0 t+\frac{1}{3}\left(A_0 \cos \omega_0 t\right)^3\right]} \\ +\left[1+\left(A_0 \cos \omega_0 t\right)^2\right](\delta \cos \omega t) \\ +\left(A_0 \cos \omega_0 t\right)(\delta \cos \omega t)^2+\frac{1}{3}(\delta \cos \omega t)^3 \end{array}\right\} ia= [A0cosω0t+31(A0cosω0t)3]+[1+(A0cosω0t)2](δcosωt)+(A0cosω0t)(δcosωt)2+31(δcosωt)3

增量 Δ i a \Delta i_{\mathrm{a}} Δia为:

Δ i a = [ 1 + ( A 0 cos ⁡ ω 0 t ) 2 ] ( δ cos ⁡ ω t ) \Delta i_{\mathrm{a}}=\left[1+\left(A_0\cos\omega_0t\right)^2\right](\delta\cos\omega t) Δia=[1+(A0cosω0t)2](δcosωt)

推导过程

展开括号:
Δ i a = δ cos ⁡ ω t + ( A 0 cos ⁡ ω 0 t ) 2 ( δ cos ⁡ ω t ) \Delta i_{\mathrm{a}}=\delta\cos\omega t+\left(A_0\cos\omega_0t\right)^2(\delta\cos\omega t) Δia=δcosωt+(A0cosω0t)2(δcosωt)

第一项为 δ cos ⁡ ω t \delta\cos\omega t δcosωt,只需化简第二项 ( A 0 cos ⁡ ω 0 t ) 2 ( δ cos ⁡ ω t ) \left(A_0\cos\omega_0t\right)^2(\delta\cos\omega t) (A0cosω0t)2(δcosωt)


第二项的化简:

平方项 ( cos ⁡ ω 0 t ) 2 \left(\cos\omega_0t\right)^2 (cosω0t)2利用公式化简:
cos ⁡ 2 ω 0 t = 1 + cos ⁡ 2 ω 0 t 2 \cos^2\omega_0t=\frac{1+\cos2\omega_0t}{2} cos2ω0t=21+cos2ω0t

因此:
( A 0 cos ⁡ ω 0 t ) 2 = A 0 2 ⋅ 1 + cos ⁡ 2 ω 0 t 2 = A 0 2 2 + A 0 2 2 cos ⁡ 2 ω 0 t \left(A_0\cos\omega_0t\right)^2=A_0^2\cdot\frac{1+\cos2\omega_0t}{2}=\frac{A_0^2}{2}+\frac{A_0^2}{2}\cos2\omega_0t (A0cosω0t)2=A0221+cos2ω0t=2A02+2A02cos2ω0t

带回第二项:
( A 0 cos ⁡ ω 0 t ) 2 ( δ cos ⁡ ω t ) = ( A 0 2 2 + A 0 2 2 cos ⁡ 2 ω 0 t ) ( δ cos ⁡ ω t ) \left(A_0\cos\omega_0t\right)^2(\delta\cos\omega t)=\left(\frac{A_0^2}{2}+\frac{A_0^2}{2}\cos2\omega_0t\right)(\delta\cos\omega t) (A0cosω0t)2(δcosωt)=(2A02+2A02cos2ω0t)(δcosωt)

分配展开:
( A 0 cos ⁡ ω 0 t ) 2 ( δ cos ⁡ ω t ) = A 0 2 2 δ cos ⁡ ω t + A 0 2 2 δ cos ⁡ 2 ω 0 t cos ⁡ ω t \left(A_0\cos\omega_0t\right)^2(\delta\cos\omega t)=\frac{A_0^2}{2}\delta\cos\omega t+\frac{A_0^2}{2}\delta\cos2\omega_0t\cos\omega t (A0cosω0t)2(δcosωt)=2A02δcosωt+2A02δcos2ω0tcosωt


使用积化和差公式:

积化和差公式:
cos ⁡ a cos ⁡ b = 1 2 [ cos ⁡ ( a + b ) + cos ⁡ ( a − b ) ] \cos a\cos b=\frac{1}{2}\left[\cos(a+b)+\cos(a-b)\right] cosacosb=21[cos(a+b)+cos(ab)]

对于第二项:
cos ⁡ 2 ω 0 t cos ⁡ ω t = 1 2 [ cos ⁡ ( ( ω + 2 ω 0 ) t ) + cos ⁡ ( ( ω − 2 ω 0 ) t ) ] \cos2\omega_0t\cos\omega t=\frac{1}{2}\left[\cos\left((\omega+2\omega_0)t\right)+\cos\left((\omega-2\omega_0)t\right)\right] cos2ω0tcosωt=21[cos((ω+2ω0)t)+cos((ω2ω0)t)]

因此:
A 0 2 2 δ cos ⁡ 2 ω 0 t cos ⁡ ω t = A 0 2 4 δ cos ⁡ ( ( ω + 2 ω 0 ) t ) + A 0 2 4 δ cos ⁡ ( ( ω − 2 ω 0 ) t ) \frac{A_0^2}{2}\delta\cos2\omega_0t\cos\omega t=\frac{A_0^2}{4}\delta\cos\left((\omega+2\omega_0)t\right)+\frac{A_0^2}{4}\delta\cos\left((\omega-2\omega_0)t\right) 2A02δcos2ω0tcosωt=4A02δcos((ω+2ω0)t)+4A02δcos((ω2ω0)t)


合并结果:

将以上化简带回整体公式:
Δ i a = δ cos ⁡ ω t + A 0 2 2 δ cos ⁡ ω t + A 0 2 4 δ cos ⁡ ( ( ω + 2 ω 0 ) t ) + A 0 2 4 δ cos ⁡ ( ( ω − 2 ω 0 ) t ) \Delta i_{\mathrm{a}}=\delta\cos\omega t+\frac{A_0^2}{2}\delta\cos\omega t+\frac{A_0^2}{4}\delta\cos\left((\omega+2\omega_0)t\right)+\frac{A_0^2}{4}\delta\cos\left((\omega-2\omega_0)t\right) Δia=δcosωt+2A02δcosωt+4A02δcos((ω+2ω0)t)+4A02δcos((ω2ω0)t)

合并 δ cos ⁡ ω t \delta\cos\omega t δcosωt项:
Δ i a = ( 1 + A 0 2 2 ) δ cos ⁡ ω t + A 0 2 4 δ cos ⁡ ( ( ω + 2 ω 0 ) t ) + A 0 2 4 δ cos ⁡ ( ( ω − 2 ω 0 ) t ) \Delta i_{\mathrm{a}}=\left(1+\frac{A_0^2}{2}\right)\delta\cos\omega t+\frac{A_0^2}{4}\delta\cos\left((\omega+2\omega_0)t\right)+\frac{A_0^2}{4}\delta\cos\left((\omega-2\omega_0)t\right) Δia=(1+2A02)δcosωt+4A02δcos((ω+2ω0)t)+4A02δcos((ω2ω0)t)


Δ i a \Delta i_{\mathrm{a}} Δia结果解释:

  • 第一项:基波分量,频率为 ω \omega ω
  • 第二项和第三项:调制分量,分别对应频率 ω + 2 ω 0 \omega+2\omega_0 ω+2ω0 ω − 2 ω 0 \omega-2\omega_0 ω2ω0

B相交流稳定工作点基于Taylor级数展开的增量线性化推导过程

对于B相,有 u = u b 0 + Δ u b u=u_{\mathrm{b}0}+\Delta u_{\mathrm{b}} u=ub0+Δub

{ u b 0 = A 0 cos ⁡ ( ω 0 t − 2 π 3 ) Δ u b = δ cos ⁡ ( 2 π f t − 2 π 3 ) = δ cos ⁡ ( ω t − 2 π 3 ) \left\{\begin{array}{l}u_{\mathrm{b} 0}=A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right) \\ \Delta u_{\mathrm{b}}=\delta \cos \left(2 \pi f t-\frac{2 \pi}{3}\right)=\delta \cos \left(\omega t-\frac{2 \pi}{3}\right)\end{array}\right. {ub0=A0cos(ω0t32π)Δub=δcos(2πft32π)=δcos(ωt32π)

i b = u b + 1 3 u b 3 = { [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) + 1 3 [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 3 ] + [ 1 + [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 ] ( δ cos ⁡ ω t ) + [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] ( δ cos ⁡ ω t ) 2 + 1 3 ( δ cos ⁡ ω t ) 3 } i_{\mathrm{b}}=u_{\mathrm{b}}+\frac{1}{3} u_{\mathrm{b}}^3=\left\{\begin{array}{l}{\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)+\frac{1}{3}\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)\right]^3\right]} \\ +\left[1+\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)\right]^2\right](\delta \cos \omega t) \\ +\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)\right](\delta \cos \omega t)^2+\frac{1}{3}(\delta \cos \omega t)^3\end{array}\right\} ib=ub+31ub3= [A0cos(ω0t32π)+31[A0cos(ω0t32π)]3]+[1+[A0cos(ω0t32π)]2](δcosωt)+[A0cos(ω0t32π)](δcosωt)2+31(δcosωt)3

增量 Δ i b \Delta i_{\mathrm{b}} Δib为:

Δ i b = [ 1 + [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 ] ( δ cos ⁡ ω t ) Δ i b = { ( 1 + A 0 2 2 ) δ cos ⁡ ( ω t − 2 π 3 ) + A 0 2 4 δ cos ⁡ [ ( ω − 2 ω 0 ) t + 2 π 3 ] + A 0 2 4 δ cos ⁡ ( ω + 2 ω 0 ) t } \begin{gathered}\Delta i_{\mathrm{b}}=\left[1+\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)\right]^2\right](\delta \cos \omega t) \\ \Delta i_{\mathrm{b}}=\left\{\begin{array}{l}\left(1+\frac{A_0^2}{2}\right) \delta \cos \left(\omega t-\frac{2 \pi}{3}\right) \\ +\frac{A_0^2}{4} \delta \cos \left[\left(\omega-2 \omega_0\right) t+\frac{2 \pi}{3}\right] \\ +\frac{A_0^2}{4} \delta \cos \left(\omega+2 \omega_0\right) t\end{array}\right\}\end{gathered} Δib=[1+[A0cos(ω0t32π)]2](δcosωt)Δib= (1+2A02)δcos(ωt32π)+4A02δcos[(ω2ω0)t+32π]+4A02δcos(ω+2ω0)t

推导过程

第一项为基波分量 δ cos ⁡ ω t \delta \cos \omega t δcosωt,我们专注于化简第二项。

我们从给定的表达式出发,来推导 Δ i b \Delta i_{\mathrm{b}} Δib的展开式:

Δ i b = [ 1 + [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 ] δ cos ⁡ ( ω t − 2 π 3 ) \Delta i_{\mathrm{b}} = \left[1 + \left[A_0 \cos \left(\omega_0 t - \frac{2 \pi}{3} \right)\right]^2\right] \delta \cos \left(\omega t - \frac{2 \pi}{3}\right) Δib=[1+[A0cos(ω0t32π)]2]δcos(ωt32π)

步骤 1:展开平方项

首先,考虑平方项 [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 \left[A_0 \cos \left(\omega_0 t - \frac{2 \pi}{3} \right)\right]^2 [A0cos(ω0t32π)]2。展开得到:

[ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 = A 0 2 cos ⁡ 2 ( ω 0 t − 2 π 3 ) \left[A_0 \cos \left(\omega_0 t - \frac{2 \pi}{3} \right)\right]^2 = A_0^2 \cos^2 \left(\omega_0 t - \frac{2 \pi}{3} \right) [A0cos(ω0t32π)]2=A02cos2(ω0t32π)

根据三角恒等式, cos ⁡ 2 θ = 1 2 ( 1 + cos ⁡ 2 θ ) \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) cos2θ=21(1+cos2θ),将其代入上式:

A 0 2 cos ⁡ 2 ( ω 0 t − 2 π 3 ) = A 0 2 2 [ 1 + cos ⁡ ( 2 ω 0 t − 4 π 3 ) ] A_0^2 \cos^2 \left(\omega_0 t - \frac{2 \pi}{3} \right) = \frac{A_0^2}{2} \left[ 1 + \cos \left(2 \omega_0 t - \frac{4 \pi}{3} \right) \right] A02cos2(ω0t32π)=2A02[1+cos(2ω0t34π)]

步骤 2:将展开式代入原式

现在,我们将展开后的平方项代入原始表达式中:

Δ i b = [ 1 + A 0 2 2 [ 1 + cos ⁡ ( 2 ω 0 t − 4 π 3 ) ] ] δ cos ⁡ ( ω t − 2 π 3 ) \Delta i_{\mathrm{b}} = \left[ 1 + \frac{A_0^2}{2} \left[ 1 + \cos \left(2 \omega_0 t - \frac{4 \pi}{3} \right) \right] \right] \delta \cos \left( \omega t - \frac{2 \pi}{3} \right) Δib=[1+2A02[1+cos(2ω0t34π)]]δcos(ωt32π)

这可以进一步整理为:

Δ i b = [ 1 + A 0 2 2 + A 0 2 2 cos ⁡ ( 2 ω 0 t − 4 π 3 ) ] δ cos ⁡ ( ω t − 2 π 3 ) \Delta i_{\mathrm{b}} = \left[ 1 + \frac{A_0^2}{2} + \frac{A_0^2}{2} \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) \right] \delta \cos \left( \omega t - \frac{2 \pi}{3} \right) Δib=[1+2A02+2A02cos(2ω0t34π)]δcos(ωt32π)

步骤 3:分配乘法

接下来,将右边的项逐项展开:

Δ i b = δ cos ⁡ ( ω t − 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ω t − 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( 2 ω 0 t − 4 π 3 ) \Delta i_{\mathrm{b}} = \delta \cos \left( \omega t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \omega t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \omega t - \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) Δib=δcos(ωt32π)+2A02δcos(ωt32π)+2A02δcos(ωt32π)cos(2ω0t34π)

步骤 4:使用乘积公式

为了展开最后一项,我们需要使用三角函数的乘积公式:

cos ⁡ A cos ⁡ B = 1 2 [ cos ⁡ ( A − B ) + cos ⁡ ( A + B ) ] \cos A \cos B = \frac{1}{2} \left[ \cos(A - B) + \cos(A + B) \right] cosAcosB=21[cos(AB)+cos(A+B)]

cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( 2 ω 0 t − 4 π 3 ) \cos \left( \omega t - \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) cos(ωt32π)cos(2ω0t34π)代入公式中,得到:

cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( 2 ω 0 t − 4 π 3 ) = 1 2 [ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 + 4 π 3 ) + cos ⁡ ( ( ω + 2 ω 0 ) t − 2 π 3 − 4 π 3 ) ] \cos \left( \omega t - \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) = \frac{1}{2} \left[ \cos \left( (\omega - 2 \omega_0) t - \frac{2 \pi}{3} + \frac{4 \pi}{3} \right) + \cos \left( (\omega + 2 \omega_0) t - \frac{2 \pi}{3} - \frac{4 \pi}{3} \right) \right] cos(ωt32π)cos(2ω0t34π)=21[cos((ω2ω0)t32π+34π)+cos((ω+2ω0)t32π34π)]

简化得到:

cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( 2 ω 0 t − 4 π 3 ) = 1 2 [ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) + cos ⁡ ( ( ω + 2 ω 0 ) t − 2 π 3 ) ] \cos \left( \omega t - \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) = \frac{1}{2} \left[ \cos \left( (\omega - 2 \omega_0) t + \frac{2 \pi}{3} \right) + \cos \left( (\omega + 2 \omega_0) t - \frac{2 \pi}{3} \right) \right] cos(ωt32π)cos(2ω0t34π)=21[cos((ω2ω0)t+32π)+cos((ω+2ω0)t32π)]

步骤 5:整理最终表达式

将上述结果代入到最终的展开式中,得到:

Δ i b = ( 1 + A 0 2 2 ) δ cos ⁡ ( ω t − 2 π 3 ) + A 0 2 4 δ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) + A 0 2 4 δ cos ⁡ ( ( ω + 2 ω 0 ) t − 2 π 3 ) \Delta i_{\mathrm{b}} = \left( 1 + \frac{A_0^2}{2} \right) \delta \cos \left( \omega t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{4} \delta \cos \left( (\omega - 2 \omega_0) t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{4} \delta \cos \left( (\omega + 2 \omega_0) t - \frac{2 \pi}{3} \right) Δib=(1+2A02)δcos(ωt32π)+4A02δcos((ω2ω0)t+32π)+4A02δcos((ω+2ω0)t32π)

C相交流稳定工作点基于Taylor级数展开的增量线性化推导过程

对于B相,有 u = u c 0 + Δ u c u=u_{\mathrm{c}0}+\Delta u_{\mathrm{c}} u=uc0+Δuc

{ u c 0 = A 0 cos ⁡ ( ω 0 t + 2 π 3 ) Δ u c = δ cos ⁡ ( 2 π f t + 2 π 3 ) = δ cos ⁡ ( ω t + 2 π 3 ) \left\{\begin{array}{l}u_{\mathrm{c} 0}=A_0 \cos \left(\omega_0 t+\frac{2 \pi}{3}\right) \\ \Delta u_{\mathrm{c}}=\delta \cos \left(2 \pi f t+\frac{2 \pi}{3}\right)=\delta \cos \left(\omega t+\frac{2 \pi}{3}\right)\end{array}\right. {uc0=A0cos(ω0t+32π)Δuc=δcos(2πft+32π)=δcos(ωt+32π)

同理可推出:

Δ i c = [ 1 + [ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) ] 2 ] δ cos ⁡ ( ω t + 2 π 3 ) \Delta i_{\mathrm{c}}=\left[1+\left[A_0 \cos \left(\omega_0 t+\frac{2 \pi}{3}\right)\right]^2\right] \delta \cos \left(\omega t+\frac{2 \pi}{3}\right) Δic=[1+[A0cos(ω0t+32π)]2]δcos(ωt+32π)

通过化简可得:

Δ i c = { ( 1 + A 0 2 2 ) δ cos ⁡ ( ω t + 2 π 3 ) + A 0 2 4 δ cos ⁡ [ ( ω − 2 ω 0 ) t − 2 π 3 ] + A 0 2 4 δ cos ⁡ ( ω + 2 ω 0 ) t } \Delta i_{\mathrm{c}}=\left\{\begin{array}{l}\left(1+\frac{A_0^2}{2}\right) \delta \cos \left(\omega t+\frac{2 \pi}{3}\right) \\ +\frac{A_0^2}{4} \delta \cos \left[\left(\omega-2 \omega_0\right) t-\frac{2 \pi}{3}\right] \\ +\frac{A_0^2}{4} \delta \cos \left(\omega+2 \omega_0\right) t\end{array}\right\} Δic= (1+2A02)δcos(ωt+32π)+4A02δcos[(ω2ω0)t32π]+4A02δcos(ω+2ω0)t

化简过程如下:

步骤 1:展开平方项

首先,我们展开平方项 [ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) ] 2 \left[ A_0 \cos \left( \omega_0 t + \frac{2 \pi}{3} \right) \right]^2 [A0cos(ω0t+32π)]2。得到:

[ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) ] 2 = A 0 2 cos ⁡ 2 ( ω 0 t + 2 π 3 ) \left[ A_0 \cos \left( \omega_0 t + \frac{2 \pi}{3} \right) \right]^2 = A_0^2 \cos^2 \left( \omega_0 t + \frac{2 \pi}{3} \right) [A0cos(ω0t+32π)]2=A02cos2(ω0t+32π)

根据三角恒等式 cos ⁡ 2 θ = 1 2 ( 1 + cos ⁡ 2 θ ) \cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta) cos2θ=21(1+cos2θ),我们可以将其代入得到:

A 0 2 cos ⁡ 2 ( ω 0 t + 2 π 3 ) = A 0 2 2 [ 1 + cos ⁡ ( 2 ω 0 t + 4 π 3 ) ] A_0^2 \cos^2 \left( \omega_0 t + \frac{2 \pi}{3} \right) = \frac{A_0^2}{2} \left[ 1 + \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) \right] A02cos2(ω0t+32π)=2A02[1+cos(2ω0t+34π)]

步骤 2:将展开式代入原式

现在,将展开后的平方项代入原始表达式中:

Δ i c = [ 1 + A 0 2 2 [ 1 + cos ⁡ ( 2 ω 0 t + 4 π 3 ) ] ] δ cos ⁡ ( ω t + 2 π 3 ) \Delta i_{\mathrm{c}} = \left[ 1 + \frac{A_0^2}{2} \left[ 1 + \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) \right] \right] \delta \cos \left( \omega t + \frac{2 \pi}{3} \right) Δic=[1+2A02[1+cos(2ω0t+34π)]]δcos(ωt+32π)

我们可以进一步简化为:

Δ i c = [ 1 + A 0 2 2 + A 0 2 2 cos ⁡ ( 2 ω 0 t + 4 π 3 ) ] δ cos ⁡ ( ω t + 2 π 3 ) \Delta i_{\mathrm{c}} = \left[ 1 + \frac{A_0^2}{2} + \frac{A_0^2}{2} \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) \right] \delta \cos \left( \omega t + \frac{2 \pi}{3} \right) Δic=[1+2A02+2A02cos(2ω0t+34π)]δcos(ωt+32π)

步骤 3:分配乘法

接下来,我们将右边的每一项逐一展开:

Δ i c = δ cos ⁡ ( ω t + 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ω t + 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ω t + 2 π 3 ) cos ⁡ ( 2 ω 0 t + 4 π 3 ) \Delta i_{\mathrm{c}} = \delta \cos \left( \omega t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \omega t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \omega t + \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) Δic=δcos(ωt+32π)+2A02δcos(ωt+32π)+2A02δcos(ωt+32π)cos(2ω0t+34π)

步骤 4:使用三角函数的乘积公式

为了展开最后一项,我们使用三角函数的乘积公式:

cos ⁡ A cos ⁡ B = 1 2 [ cos ⁡ ( A − B ) + cos ⁡ ( A + B ) ] \cos A \cos B = \frac{1}{2} \left[ \cos (A - B) + \cos (A + B) \right] cosAcosB=21[cos(AB)+cos(A+B)]

cos ⁡ ( ω t + 2 π 3 ) cos ⁡ ( 2 ω 0 t + 4 π 3 ) \cos \left( \omega t + \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) cos(ωt+32π)cos(2ω0t+34π) 代入公式,得到:

cos ⁡ ( ω t + 2 π 3 ) cos ⁡ ( 2 ω 0 t + 4 π 3 ) = 1 2 [ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 − 4 π 3 ) + cos ⁡ ( ( ω + 2 ω 0 ) t + 2 π 3 + 4 π 3 ) ] \cos \left( \omega t + \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) = \frac{1}{2} \left[ \cos \left( (\omega - 2 \omega_0) t + \frac{2 \pi}{3} - \frac{4 \pi}{3} \right) + \cos \left( (\omega + 2 \omega_0) t + \frac{2 \pi}{3} + \frac{4 \pi}{3} \right) \right] cos(ωt+32π)cos(2ω0t+34π)=21[cos((ω2ω0)t+32π34π)+cos((ω+2ω0)t+32π+34π)]

简化得到:

cos ⁡ ( ω t + 2 π 3 ) cos ⁡ ( 2 ω 0 t + 4 π 3 ) = 1 2 [ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) + cos ⁡ ( ( ω + 2 ω 0 ) t + 2 π 3 ) ] \cos \left( \omega t + \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) = \frac{1}{2} \left[ \cos \left( (\omega - 2 \omega_0) t - \frac{2 \pi}{3} \right) + \cos \left( (\omega + 2 \omega_0) t + \frac{2 \pi}{3} \right) \right] cos(ωt+32π)cos(2ω0t+34π)=21[cos((ω2ω0)t32π)+cos((ω+2ω0)t+32π)]

步骤 5:整理最终表达式

将展开式代入到之前的表达式中,得到:

Δ i c = ( 1 + A 0 2 2 ) δ cos ⁡ ( ω t + 2 π 3 ) + A 0 2 4 δ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) + A 0 2 4 δ cos ⁡ ( ( ω + 2 ω 0 ) t + 2 π 3 ) \Delta i_{\mathrm{c}} = \left( 1 + \frac{A_0^2}{2} \right) \delta \cos \left( \omega t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{4} \delta \cos \left( (\omega - 2 \omega_0) t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{4} \delta \cos \left( (\omega + 2 \omega_0) t + \frac{2 \pi}{3} \right) Δic=(1+2A02)δcos(ωt+32π)+4A02δcos((ω2ω0)t32π)+4A02δcos((ω+2ω0)t+32π)

负序激励

A相交流稳定工作点基于Taylor级数展开的增量线性化推导过程

{ u a 0 = A 0 cos ⁡ ω 0 t Δ u a = Δ u f − 2 f 0 = δ cos ⁡ 2 π ( f − 2 f 0 ) t = δ cos ⁡ ( ω − 2 ω 0 ) t \left\{\begin{array}{l} u_{\mathrm{a} 0}=A_0 \cos \omega_0 t \\ \Delta u_{\mathrm{a}}=\Delta u_{f-2 f_0}=\delta \cos 2 \pi\left(f-2 f_0\right) t=\delta \cos \left(\omega-2 \omega_0\right) t \end{array}\right. {ua0=A0cosω0tΔua=Δuf2f0=δcos2π(f2f0)t=δcos(ω2ω0)t

同理根据Taylor级数展开得到对应非线性函数为:

i a = { [ A 0 cos ⁡ ω 0 t + 1 3 ( A 0 cos ⁡ ω 0 t ) 3 ] + [ 1 + ( A 0 cos ⁡ ω 0 t ) 2 ] δ cos ⁡ ( ω − 2 ω 0 ) t + ( A 0 cos ⁡ ω 0 t ) [ δ cos ⁡ ( ω − 2 ω 0 ) t ] 2 + 1 3 [ δ cos ⁡ ( ω − 2 ω 0 ) t ] 3 } i_{\mathrm{a}}=\left\{\begin{array}{l} {\left[A_0 \cos \omega_0 t+\frac{1}{3}\left(A_0 \cos \omega_0 t\right)^3\right]} \\ +\left[1+\left(A_0 \cos \omega_0 t\right)^2\right] \delta \cos \left(\omega-2 \omega_0\right) t \\ +\left(A_0 \cos \omega_0 t\right)\left[\delta \cos \left(\omega-2 \omega_0\right) t\right]^2+\frac{1}{3}\left[\delta \cos \left(\omega-2 \omega_0\right) t\right]^3 \end{array}\right\} ia= [A0cosω0t+31(A0cosω0t)3]+[1+(A0cosω0t)2]δcos(ω2ω0)t+(A0cosω0t)[δcos(ω2ω0)t]2+31[δcos(ω2ω0)t]3

Δ i a = [ 1 + ( A 0 cos ⁡ ω 0 t ) 2 ] δ cos ⁡ ( ω − 2 ω 0 ) t = ( 1 + A 0 2 2 ) δ cos ⁡ ( ω − 2 ω 0 ) t + A 0 2 4 δ cos ⁡ ( ω − 4 ω 0 ) t + A 0 2 4 δ cos ⁡ ω t \begin{aligned} & \Delta i_{\mathrm{a}}=\left[1+\left(A_0 \cos \omega_0 t\right)^2\right] \delta \cos \left(\omega-2 \omega_0\right) t \\ & =\left(1+\frac{A_0^2}{2}\right) \delta \cos \left(\omega-2 \omega_0\right) t+\frac{A_0^2}{4} \delta \cos \left(\omega-4 \omega_0\right) t+\frac{A_0^2}{4} \delta \cos \omega t \end{aligned} Δia=[1+(A0cosω0t)2]δcos(ω2ω0)t=(1+2A02)δcos(ω2ω0)t+4A02δcos(ω4ω0)t+4A02δcosωt

B相交流稳定工作点基于Taylor级数展开的增量线性化推导过程

{ u b 0 = A 0 cos ⁡ ( ω 0 t − 2 π 3 ) Δ u b = δ cos ⁡ [ 2 π ( f − 2 f 0 ) t + 2 π / 3 ] = δ cos ⁡ [ ( ω − 2 ω 0 ) t + 2 π 3 ] \left\{\begin{array}{l} u_{\mathrm{b} 0}=A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right) \\ \Delta u_{\mathrm{b}}=\delta \cos \left[2 \pi\left(f-2 f_0\right) t+2 \pi / 3\right]=\delta \cos \left[\left(\omega-2 \omega_0\right) t+\frac{2 \pi}{3}\right] \end{array}\right. {ub0=A0cos(ω0t32π)Δub=δcos[2π(f2f0)t+2π/3]=δcos[(ω2ω0)t+32π]

同理根据Taylor级数展开得到对应非线性函数为:

i b = u b + 1 3 u b 3 = { [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) + 1 3 [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 3 ] + [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 ] δ cos ⁡ [ ( ω − 2 ω 0 ) t + 2 π 3 ] + [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] { δ cos ⁡ [ ( ω − 2 ω 0 ) t + 2 π 3 ] } 2 + 1 3 { δ cos ⁡ [ ( ω − 2 ω 0 ) t + 2 π 3 ] } 3 } i_{\mathrm{b}}=u_{\mathrm{b}}+\frac{1}{3} u_{\mathrm{b}}^3=\left\{\begin{array}{l} {\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)+\frac{1}{3}\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)\right]^3\right]} \\ \left.+\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)\right]^2\right] \delta \cos \left[\left(\omega-2 \omega_0\right) t+\frac{2 \pi}{3}\right] \\ +\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)\right]\left\{\delta \cos \left[\left(\omega-2 \omega_0\right) t+\frac{2 \pi}{3}\right]\right\}^2+\frac{1}{3}\left\{\delta \cos \left[\left(\omega-2 \omega_0\right) t+\frac{2 \pi}{3}\right]\right\}^3 \end{array}\right\} ib=ub+31ub3= [A0cos(ω0t32π)+31[A0cos(ω0t32π)]3]+[A0cos(ω0t32π)]2]δcos[(ω2ω0)t+32π]+[A0cos(ω0t32π)]{δcos[(ω2ω0)t+32π]}2+31{δcos[(ω2ω0)t+32π]}3

Δ i b = [ 1 + [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 ] δ cos ⁡ [ ( ω − 2 ω 0 ) t + 2 π 3 ] \Delta i_{\mathrm{b}}=\left[1+\left[A_0 \cos \left(\omega_0 t-\frac{2 \pi}{3}\right)\right]^2\right] \delta \cos \left[\left(\omega-2 \omega_0\right) t+\frac{2 \pi}{3}\right] Δib=[1+[A0cos(ω0t32π)]2]δcos[(ω2ω0)t+32π]

步骤 1:展开平方项

首先,展开平方项 [ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 \left[ A_0 \cos \left( \omega_0 t - \frac{2 \pi}{3} \right) \right]^2 [A0cos(ω0t32π)]2

[ A 0 cos ⁡ ( ω 0 t − 2 π 3 ) ] 2 = A 0 2 cos ⁡ 2 ( ω 0 t − 2 π 3 ) \left[ A_0 \cos \left( \omega_0 t - \frac{2 \pi}{3} \right) \right]^2 = A_0^2 \cos^2 \left( \omega_0 t - \frac{2 \pi}{3} \right) [A0cos(ω0t32π)]2=A02cos2(ω0t32π)

利用三角恒等式 cos ⁡ 2 θ = 1 2 ( 1 + cos ⁡ 2 θ ) \cos^2 \theta = \frac{1}{2} \left( 1 + \cos 2\theta \right) cos2θ=21(1+cos2θ),我们将其展开:

A 0 2 cos ⁡ 2 ( ω 0 t − 2 π 3 ) = A 0 2 2 ( 1 + cos ⁡ ( 2 ω 0 t − 4 π 3 ) ) A_0^2 \cos^2 \left( \omega_0 t - \frac{2 \pi}{3} \right) = \frac{A_0^2}{2} \left( 1 + \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) \right) A02cos2(ω0t32π)=2A02(1+cos(2ω0t34π))

步骤 2:将平方项代入原式

将展开后的平方项代入原始表达式:

Δ i b = [ 1 + A 0 2 2 ( 1 + cos ⁡ ( 2 ω 0 t − 4 π 3 ) ) ] δ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) \Delta {i}_{\mathrm{b}} = \left[ 1 + \frac{A_0^2}{2} \left( 1 + \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) \right) \right] \delta \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) Δib=[1+2A02(1+cos(2ω0t34π))]δcos((ω2ω0)t+32π)

展开并整理后得到:

Δ i b = δ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) cos ⁡ ( 2 ω 0 t − 4 π 3 ) \Delta {i}_{\mathrm{b}} = \delta \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) Δib=δcos((ω2ω0)t+32π)+2A02δcos((ω2ω0)t+32π)+2A02δcos((ω2ω0)t+32π)cos(2ω0t34π)

步骤 3:使用三角函数的乘积公式

为了展开最后一项,我们使用三角函数的乘积公式:

cos ⁡ A cos ⁡ B = 1 2 [ cos ⁡ ( A − B ) + cos ⁡ ( A + B ) ] \cos A \cos B = \frac{1}{2} \left[ \cos (A - B) + \cos (A + B) \right] cosAcosB=21[cos(AB)+cos(A+B)]

cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) cos ⁡ ( 2 ω 0 t − 4 π 3 ) \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) cos((ω2ω0)t+32π)cos(2ω0t34π) 代入公式:

cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) cos ⁡ ( 2 ω 0 t − 4 π 3 ) = 1 2 [ cos ⁡ ( ( ω − 4 ω 0 ) t + 2 π 3 + 4 π 3 ) + cos ⁡ ( ω t + 2 π 3 − 4 π 3 ) ] \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) = \frac{1}{2} \left[ \cos \left( \left( \omega - 4 \omega_0 \right) t + \frac{2 \pi}{3} + \frac{4 \pi}{3} \right) + \cos \left( \omega t + \frac{2 \pi}{3} - \frac{4 \pi}{3} \right) \right] cos((ω2ω0)t+32π)cos(2ω0t34π)=21[cos((ω4ω0)t+32π+34π)+cos(ωt+32π34π)]

化简后得到:

cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) cos ⁡ ( 2 ω 0 t − 4 π 3 ) = 1 2 [ cos ⁡ ( ( ω − 4 ω 0 ) t ) + cos ⁡ ( ω t − 2 π 3 ) ] \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t - \frac{4 \pi}{3} \right) = \frac{1}{2} \left[ \cos \left( \left( \omega - 4 \omega_0 \right) t \right) + \cos \left( \omega t - \frac{2 \pi}{3} \right) \right] cos((ω2ω0)t+32π)cos(2ω0t34π)=21[cos((ω4ω0)t)+cos(ωt32π)]

步骤 4:整理最终结果

现在,将这一项代入原式,得到:

Δ i b = δ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) + A 0 2 4 δ cos ⁡ ( ω − 4 ω 0 ) t + A 0 2 4 δ cos ⁡ ( ω t − 2 π 3 ) \Delta {i}_{\mathrm{b}} = \delta \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{4} \delta \cos \left( \omega - 4 \omega_0 \right) t + \frac{A_0^2}{4} \delta \cos \left( \omega t - \frac{2 \pi}{3} \right) Δib=δcos((ω2ω0)t+32π)+2A02δcos((ω2ω0)t+32π)+4A02δcos(ω4ω0)t+4A02δcos(ωt32π)

最终整理为:

Δ i b = ( 1 + A 0 2 2 ) δ cos ⁡ ( ( ω − 2 ω 0 ) t + 2 π 3 ) + A 0 2 4 δ cos ⁡ ( ω − 4 ω 0 ) t + A 0 2 4 δ cos ⁡ ( ω t − 2 π 3 ) \Delta i_{\mathrm{b}} = \left( 1 + \frac{A_0^2}{2} \right) \delta \cos \left( \left( \omega - 2 \omega_0 \right) t + \frac{2 \pi}{3} \right) + \frac{A_0^2}{4} \delta \cos \left( \omega - 4 \omega_0 \right) t + \frac{A_0^2}{4} \delta \cos \left( \omega t - \frac{2 \pi}{3} \right) Δib=(1+2A02)δcos((ω2ω0)t+32π)+4A02δcos(ω4ω0)t+4A02δcos(ωt32π)

C相交流稳定工作点基于Taylor级数展开的增量线性化推导过程

对于C相,同理

{ u c 0 = A 0 cos ⁡ ( ω 0 t + 2 π 3 ) Δ u c = δ cos ⁡ [ 2 π ( f − 2 f 0 ) t − 2 π 3 ] = δ cos ⁡ [ ( ω − 2 ω 0 ) t − 2 π 3 ] \left\{\begin{array}{l} u_{\mathrm{c} 0}=A_0 \cos \left(\omega_0 t+\frac{2 \pi}{3}\right) \\ \Delta u_{\mathrm{c}}=\delta \cos \left[2 \pi\left(f-2 f_0\right) t-\frac{2 \pi}{3}\right]=\delta \cos \left[\left(\omega-2 \omega_0\right) t-\frac{2 \pi}{3}\right] \end{array}\right. {uc0=A0cos(ω0t+32π)Δuc=δcos[2π(f2f0)t32π]=δcos[(ω2ω0)t32π]

同理根据Taylor级数展开得到对应非线性函数为:

i c = u c + 1 3 u c 3 = { [ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) + 1 3 [ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) ] 3 ] + [ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) ] 2 ] δ cos ⁡ [ ( ω − 2 ω 0 ) t − 2 π 3 ] + [ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) ] { δ cos ⁡ [ ( ω − 2 ω 0 ) t − 2 π 3 ] } 2 + 1 3 { δ cos ⁡ [ ( ω − 2 ω 0 ) t − 2 π 3 ] } 3 } i_{\mathrm{c}}=u_{\mathrm{c}}+\frac{1}{3} u_{\mathrm{c}}^3=\left\{\begin{array}{l} {\left[A_0 \cos \left(\omega_0 t+\frac{2 \pi}{3}\right)+\frac{1}{3}\left[A_0 \cos \left(\omega_0 t+\frac{2 \pi}{3}\right)\right]^3\right]} \\ \left.+\left[A_0 \cos \left(\omega_0 t+\frac{2 \pi}{3}\right)\right]^2\right] \delta \cos \left[\left(\omega-2 \omega_0\right) t-\frac{2 \pi}{3}\right] \\ +\left[A_0 \cos \left(\omega_0 t+\frac{2 \pi}{3}\right)\right]\left\{\delta \cos \left[\left(\omega-2 \omega_0\right) t-\frac{2 \pi}{3}\right]\right\}^2+\frac{1}{3}\left\{\delta \cos \left[\left(\omega-2 \omega_0\right) t-\frac{2 \pi}{3}\right]\right\}^3 \end{array}\right\} ic=uc+31uc3= [A0cos(ω0t+32π)+31[A0cos(ω0t+32π)]3]+[A0cos(ω0t+32π)]2]δcos[(ω2ω0)t32π]+[A0cos(ω0t+32π)]{δcos[(ω2ω0)t32π]}2+31{δcos[(ω2ω0)t32π]}3

Δ i c = [ 1 + [ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) ] 2 ] δ cos ⁡ [ ( ω − 2 ω 0 ) t − 2 π 3 ] \Delta i_{\mathrm{c}}=\left[1+\left[A_0 \cos \left(\omega_0 t+\frac{2 \pi}{3}\right)\right]^2\right] \delta \cos \left[\left(\omega-2 \omega_0\right) t-\frac{2 \pi}{3}\right] Δic=[1+[A0cos(ω0t+32π)]2]δcos[(ω2ω0)t32π]

化简可得:

Δ i c = { ( 1 + A 0 2 2 ) δ cos ⁡ [ ( ω − 2 ω 0 ) t − 2 π 3 ] + A 0 2 δ 4 cos ⁡ ( ω − 4 ω 0 ) t + A 0 2 4 δ cos ⁡ ( ω t + 2 π 3 ) } \Delta i_{\mathrm{c}}=\left\{\begin{array}{l} \left(1+\frac{A_0^2}{2}\right) \delta \cos \left[\left(\omega-2 \omega_0\right) t-\frac{2 \pi}{3}\right] \\ +\frac{A_0^2 \delta}{4} \cos \left(\omega-4 \omega_0\right) t \\ +\frac{A_0^2}{4} \delta \cos \left(\omega t+\frac{2 \pi}{3}\right) \end{array}\right\} Δic= (1+2A02)δcos[(ω2ω0)t32π]+4A02δcos(ω4ω0)t+4A02δcos(ωt+32π)

推导过程如下:

步骤 1:展开平方项

首先,我们对平方项进行展开:

[ A 0 cos ⁡ ( ω 0 t + 2 π 3 ) ] 2 = A 0 2 cos ⁡ 2 ( ω 0 t + 2 π 3 ) \left[A_0 \cos \left( \omega_0 t + \frac{2 \pi}{3} \right)\right]^2 = A_0^2 \cos^2 \left( \omega_0 t + \frac{2 \pi}{3} \right) [A0cos(ω0t+32π)]2=A02cos2(ω0t+32π)

使用三角恒等式 cos ⁡ 2 θ = 1 2 ( 1 + cos ⁡ 2 θ ) \cos^2 \theta = \frac{1}{2} \left( 1 + \cos 2\theta \right) cos2θ=21(1+cos2θ),我们可以进一步展开:

A 0 2 cos ⁡ 2 ( ω 0 t + 2 π 3 ) = A 0 2 2 ( 1 + cos ⁡ ( 2 ω 0 t + 4 π 3 ) ) A_0^2 \cos^2 \left( \omega_0 t + \frac{2 \pi}{3} \right) = \frac{A_0^2}{2} \left( 1 + \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) \right) A02cos2(ω0t+32π)=2A02(1+cos(2ω0t+34π))

步骤 2:将平方项代入原式

将展开后的平方项代入原始表达式:

Δ i c = [ 1 + A 0 2 2 ( 1 + cos ⁡ ( 2 ω 0 t + 4 π 3 ) ) ] δ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) \Delta i_{\mathrm{c}} = \left[ 1 + \frac{A_0^2}{2} \left( 1 + \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) \right) \right] \delta \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) Δic=[1+2A02(1+cos(2ω0t+34π))]δcos((ω2ω0)t32π)

展开并整理:

Δ i c = δ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) cos ⁡ ( 2 ω 0 t + 4 π 3 ) \Delta i_{\mathrm{c}} = \delta \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) Δic=δcos((ω2ω0)t32π)+2A02δcos((ω2ω0)t32π)+2A02δcos((ω2ω0)t32π)cos(2ω0t+34π)

步骤 3:展开最后一项

对于最后一项,使用三角函数的乘积公式:

cos ⁡ A cos ⁡ B = 1 2 [ cos ⁡ ( A − B ) + cos ⁡ ( A + B ) ] \cos A \cos B = \frac{1}{2} \left[ \cos (A - B) + \cos (A + B) \right] cosAcosB=21[cos(AB)+cos(A+B)]

将其应用到 cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) cos ⁡ ( 2 ω 0 t + 4 π 3 ) \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) cos((ω2ω0)t32π)cos(2ω0t+34π) 中:

cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) cos ⁡ ( 2 ω 0 t + 4 π 3 ) = 1 2 [ cos ⁡ ( ( ω − 4 ω 0 ) t ) + cos ⁡ ( ω t + 2 π 3 ) ] \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) \cos \left( 2 \omega_0 t + \frac{4 \pi}{3} \right) = \frac{1}{2} \left[ \cos \left( \left( \omega - 4 \omega_0 \right) t \right) + \cos \left( \omega t + \frac{2 \pi}{3} \right) \right] cos((ω2ω0)t32π)cos(2ω0t+34π)=21[cos((ω4ω0)t)+cos(ωt+32π)]

步骤 4:整理最终结果

现在,我们将这一项代入原始表达式:

Δ i c = δ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) + A 0 2 2 δ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) + A 0 2 4 δ cos ⁡ ( ω − 4 ω 0 ) t + A 0 2 4 δ cos ⁡ ( ω t + 2 π 3 ) \Delta i_{\mathrm{c}} = \delta \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{2} \delta \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{4} \delta \cos \left( \omega - 4 \omega_0 \right) t + \frac{A_0^2}{4} \delta \cos \left( \omega t + \frac{2 \pi}{3} \right) Δic=δcos((ω2ω0)t32π)+2A02δcos((ω2ω0)t32π)+4A02δcos(ω4ω0)t+4A02δcos(ωt+32π)

最终得到的结果是:

Δ i c = ( 1 + A 0 2 2 ) δ cos ⁡ ( ( ω − 2 ω 0 ) t − 2 π 3 ) + A 0 2 4 δ cos ⁡ ( ω − 4 ω 0 ) t + A 0 2 4 δ cos ⁡ ( ω t + 2 π 3 ) \Delta i_{\mathrm{c}} = \left( 1 + \frac{A_0^2}{2} \right) \delta \cos \left( \left( \omega - 2 \omega_0 \right) t - \frac{2 \pi}{3} \right) + \frac{A_0^2}{4} \delta \cos \left( \omega - 4 \omega_0 \right) t + \frac{A_0^2}{4} \delta \cos \left( \omega t + \frac{2 \pi}{3} \right) Δic=(1+2A02)δcos((ω2ω0)t32π)+4A02δcos(ω4ω0)t+4A02δcos(ωt+32π)


原文地址:https://blog.csdn.net/weixin_44114030/article/details/144331578

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!