对AVEC2014视频进行Dlib或MTCNN人脸裁剪
预处理:人脸裁剪对齐保存的操作
Dlib
dlib windows包在资源里
其他代码可查看注释帮助理解
import os
import random
import cv2
import dlib
from imutils.face_utils import FaceAligner, rect_to_bb
from tqdm import tqdm # 引入tqdm库
# 配置路径
dataset_path = 'datasets/AVEC2014' # 原始数据集路径
output_path = 'datasets/avec14' # 输出路径
crop_size = 256 # 人脸裁剪后的大小
# 获取人脸对齐器
def get_face(fa, image):
detector = dlib.get_frontal_face_detector() # 获取人脸检测器
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将图像转换为灰度图
thresh = gray.shape[0] // 4 # 设置阈值
rects = detector(gray, 2) # 检测人脸
face_aligned = None # 初始化返回的人脸图像
for rect in rects:
(x, y, w, h) = rect_to_bb(rect) # 获取人脸的坐标
if w > thresh: # 如果人脸宽度大于阈值,则认为是有效人脸
face_aligned = fa.align(image, gray, rect) # 对齐人脸
break # 只处理第一张人脸
return face_aligned
# 处理视频
def process_video(video_path, save_dir, fa):
cap = cv2.VideoCapture(video_path) # 打开视频文件
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 获取总帧数
if total_frames < 64: # 如果视频帧数少于64,跳过该视频
print(f"Warning: Video '{video_path}' has less than 64 frames. Skipping.")
cap.release() # 释放视频文件
return
start_frame = random.randint(0, total_frames - 64) # 随机选择起始帧
frames = []
for i in range(start_frame, start_frame + 64): # 提取连续的64帧
cap.set(cv2.CAP_PROP_POS_FRAMES, i) # 设置当前读取的帧数
ret, frame = cap.read() # 读取该帧
if ret:
frames.append(frame) # 保存读取到的帧
cap.release() # 释放视频文件
for i, frame in enumerate(tqdm(frames, desc=f"Processing frames from {os.path.basename(video_path)}")): # 加入进度条
face_aligned = get_face(fa, frame) # 对齐每一帧中的人脸
if face_aligned is not None:
img_name = f"{i + 1:05d}.jpg" # 给每一帧命名
save_path = os.path.join(save_dir, img_name) # 保存路径
cv2.imwrite(save_path, face_aligned) # 保存图像
else:
print(f"Face not found in frame {i + 1}") # 如果没有检测到人脸
# 主函数:处理数据集中的所有视频
def align_dlib():
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") # 加载预测器
fa = FaceAligner(predictor, desiredFaceWidth=crop_size) # 初始化人脸对齐器
# 遍历主目录(Training、Development、Testing)
main_dirs = ['Training', 'Development', 'Testing']
for main_dir in main_dirs:
main_dir_path = os.path.join(dataset_path, main_dir)
if not os.path.isdir(main_dir_path):
print(f"Skipping non-directory: {main_dir_path}")
continue
# 遍历每个子目录(Northwind、Freeform 等)
sub_dirs = os.listdir(main_dir_path)
for sub_dir in sub_dirs:
sub_dir_path = os.path.join(main_dir_path, sub_dir)
if not os.path.isdir(sub_dir_path):
print(f"Skipping non-directory: {sub_dir_path}")
continue
# 遍历视频文件夹中的每个视频文件
video_files = os.listdir(sub_dir_path)
for video_file in video_files:
video_path = os.path.join(sub_dir_path, video_file)
if not os.path.isfile(video_path):
continue
# 获取视频名称(去掉文件扩展名)
video_name = os.path.splitext(video_file)[0]
# 构建保存路径: datasets/avec14/Training/Northwind/236_1_Northwind_video
save_path = os.path.join(output_path, main_dir, sub_dir, video_name)
os.makedirs(save_path, exist_ok=True) # 创建保存文件夹
print(f"Processing video: {video_path}")
process_video(video_path, save_path, fa) # 处理该视频
if __name__ == "__main__":
align_dlib() # 调用主函数进行处理
MTCNN
import os
import pandas as pd
import cv2
from tqdm import tqdm
from mtcnn import MTCNN
def get_files(path):
file_info = os.walk(path)
file_list = []
for r, d, f in file_info:
file_list += f
return file_list
def get_dirs(path):
file_info = os.walk(path)
dirs = []
for d, r, f in file_info:
dirs.append(d)
return dirs[1:]
def generate_label_file():
print('get label....')
base_url = './AVEC2014/label/DepressionLabels/'
file_list = get_files(base_url)
labels = []
loader = tqdm(file_list)
for file in loader:
label = pd.read_csv(base_url + file, header=None)
labels.append([file[:file.find('_Depression.csv')], label[0][0]])
loader.set_description('file:{}'.format(file))
pd.DataFrame(labels, columns=['file', 'label']).to_csv('./processed/label.csv', index=False)
return labels
def generate_img(path, v_type, img_path):
videos = get_files(path)
loader = tqdm(videos)
for video in loader:
name = video[:5]
save_path = img_path + v_type + '/' + name
os.makedirs(save_path, exist_ok=True)
cap = cv2.VideoCapture(path + video)
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
gap = int(n_frames / 100)
for i in range(n_frames):
success, frame = cap.read()
if success and i % gap == 0:
cv2.imwrite(save_path + '/{}.jpg'.format(int(i / gap)), frame, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
loader.set_description("data:{} type:{} video:{} frame:{}".format(path.split('/')[2], v_type, name, i))
cap.release()
def get_img():
print('get video frames....')
train_f = './AVEC2014/train/Freeform/'
train_n = './AVEC2014/train/Northwind/'
test_f = './AVEC2014/test/Freeform/'
test_n = './AVEC2014/test/Northwind/'
validate_f = './AVEC2014/dev/Freeform/'
validate_n = './AVEC2014/dev/Northwind/'
dirs = [train_f, train_n, test_f, test_n, validate_f, validate_n]
types = ['Freeform', 'Northwind', 'Freeform', 'Northwind', 'Freeform', 'Northwind']
img_path = ['./img/train/', './img/train/', './img/test/', './img/test/', './img/validate/', './img/validate/']
os.makedirs('./img/train', exist_ok=True)
os.makedirs('./img/test', exist_ok=True)
os.makedirs('./img/validate', exist_ok=True)
for i in range(6):
generate_img(dirs[i], types[i], img_path[i])
def get_face():
print('get frame faces....')
detector = MTCNN()
'''
save_path = ['./processed/train/Freeform/', './processed/train/Northwind/', './processed/test/Freeform/',
'./processed/test/Northwind/', './processed/validate/Freeform/', './processed/validate/Northwind/']
paths = ['./img/train/Freeform/', './img/train/Northwind/', './img/test/Freeform/', './img/test/Northwind/',
'./img/validate/Freeform/', './img/validate/Northwind/']
save_path = ['./processed/validate/Freeform/', './processed/validate/Northwind/']
paths = ['./img/validate/Freeform/', './img/validate/Northwind/']
'''
save_path = [ './processed/validate/Northwind/']
paths = ['./img/validate/Northwind/']
for index, path in enumerate(paths):
dirs = get_dirs(path)
loader = tqdm(dirs)
for d in loader:
os.makedirs(save_path[index] + d.split('/')[-1], exist_ok=True)
files = get_files(d)
for file in files:
img_path = d + '/' + file
s_path = save_path[index] + d.split('/')[-1] + '/' + file
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
info = detector.detect_faces(img)
if (len(info) > 0):
x, y, width, height = info[0]['box']
confidence = info[0]['confidence']
b, g, r = cv2.split(img)
img = cv2.merge([r, g, b])
img = img[y:y + height, x:x + width, :]
cv2.imwrite(s_path, img, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
loader.set_description('confidence:{:4f} img:{}'.format(confidence, img_path))
if __name__ == '__main__':
os.makedirs('./img', exist_ok=True)
os.makedirs('./processed', exist_ok=True)
os.makedirs('./processed/train', exist_ok=True)
os.makedirs('./processed/test', exist_ok=True)
os.makedirs('./processed/validate', exist_ok=True)
label = generate_label_file()
get_img()
get_face()
原文地址:https://blog.csdn.net/weixin_44194001/article/details/143891731
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!