SpringBoot 整合 Avro 与 Kafka
优质博文:IT-BLOG-CN
【需求】:生产者发送数据至 kafka 序列化使用 Avro,消费者通过 Avro 进行反序列化,并将数据通过 MyBatisPlus 存入数据库。
一、环境介绍
【1】Apache Avro 1.8;【2】Spring Kafka 1.2;【3】Spring Boot 1.5;【4】Maven 3.5;
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.codenotfound</groupId>
<artifactId>spring-kafka-avro</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>spring-kafka-avro</name>
<description>Spring Kafka - Apache Avro Serializer Deserializer Example</description>
<url>https://www.codenotfound.com/spring-kafka-apache-avro-serializer-deserializer-example.html</url>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.4.RELEASE</version>
</parent>
<properties>
<java.version>1.8</java.version>
<spring-kafka.version>1.2.2.RELEASE</spring-kafka.version>
<avro.version>1.8.2</avro.version>
</properties>
<dependencies>
<!-- spring-boot -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!-- spring-kafka -->
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>${spring-kafka.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka-test</artifactId>
<version>${spring-kafka.version}</version>
<scope>test</scope>
</dependency>
<!-- avro -->
<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>${avro.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- spring-boot-maven-plugin -->
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<!-- avro-maven-plugin -->
<plugin>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<version>${avro.version}</version>
<executions>
<execution>
<phase>generate-sources</phase>
<goals>
<goal>schema</goal>
</goals>
<configuration>
<sourceDirectory>${project.basedir}/src/main/resources/avro/</sourceDirectory>
<outputDirectory>${project.build.directory}/generated/avro</outputDirectory>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
二、Avro 文件
【1】Avro 依赖于由使用JSON定义的原始类型组成的架构。对于此示例,我们将使用Apache Avro入门指南中的“用户”模式,如下所示。该模式存储在src / main / resources / avro下的 user.avsc文件中。我这里使用的是 electronicsPackage.avsc。namespace 指定你生成 java 类时指定的 package 路径,name 表时生成的文件。
{"namespace": "com.yd.cyber.protocol.avro",
"type": "record",
"name": "ElectronicsPackage",
"fields": [
{"name":"package_number","type":["string","null"],"default": null},
{"name":"frs_site_code","type":["string","null"],"default": null},
{"name":"frs_site_code_type","type":["string","null"],"default":null},
{"name":"end_allocate_code","type":["string","null"],"default": null},
{"name":"code_1","type":["string","null"],"default": null},
{"name":"aggregat_package_code","type":["string","null"],"default": null}
]
}
【2】Avro附带了代码生成功能,该代码生成功能使我们可以根据上面定义的“用户”模式自动创建Java类。一旦生成了相关的类,就无需直接在程序中使用架构。这些类可以使用 avro-tools.jar 或项目是Maven 项目,调用 Maven Projects 进行 compile 自动生成 electronicsPackage.java 文件:如下是通过 maven 的方式
【3】这将导致生成一个 electronicsPackage.java 类,该类包含架构和许多 Builder构造 electronicsPackage对象的方法。
三、为 Kafka 主题生成 Avro消息
Kafka Byte 在其主题中存储和传输数组。但是,当我们使用 Avro对象时,我们需要在这些 Byte数组之间进行转换。在0.9.0.0版之前,Kafka Java API使用 Encoder/ Decoder接口的实现来处理转换,但是在新API中,这些已经被 Serializer/ Deserializer接口实现代替。Kafka附带了许多 内置(反)序列化器,但不包括Avro。为了解决这个问题,我们将创建一个 AvroSerializer类,该类Serializer专门为 Avro对象实现接口。然后,我们实现将 serialize() 主题名称和数据对象作为输入的方法,在本例中,该对象是扩展的 Avro对象 SpecificRecordBase。该方法将Avro对象序列化为字节数组并返回结果。这个类属于通用类,一次配置多次使用。
package com.yd.cyber.web.avro;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.Map;
import org.apache.avro.io.BinaryEncoder;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.specific.SpecificDatumWriter;
import org.apache.avro.specific.SpecificRecordBase;
import org.apache.kafka.common.errors.SerializationException;
import org.apache.kafka.common.serialization.Serializer;
/**
* avro序列化类
* @author zzx
* @creat 2020-03-11-19:17
*/
public class AvroSerializer<T extends SpecificRecordBase> implements Serializer<T> {
@Override
public void close() {}
@Override
public void configure(Map<String, ?> arg0, boolean arg1) {}
@Override
public byte[] serialize(String topic, T data) {
if(data == null) {
return null;
}
DatumWriter<T> writer = new SpecificDatumWriter<>(data.getSchema());
ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
BinaryEncoder binaryEncoder = EncoderFactory.get().directBinaryEncoder(byteArrayOutputStream , null);
try {
writer.write(data, binaryEncoder);
binaryEncoder.flush();
byteArrayOutputStream.close();
}catch (IOException e) {
throw new SerializationException(e.getMessage());
}
return byteArrayOutputStream.toByteArray();
}
}
四、AvroConfig 配置类
Avro 配置信息在 AvroConfig 配置类中,现在,我们需要更改,AvroConfig 开始使用我们的自定义 Serializer实现。这是通过将“ VALUE_SERIALIZER_CLASS_CONFIG”属性设置为 AvroSerializer该类来完成的。此外,我们更改了ProducerFactory 和KafkaTemplate 通用类型,使其指定 ElectronicsPackage 而不是 String。当我们有多个序列化的时候,这个配置文件需要多次需求,添加自己需要序列化的对象。
package com.yd.cyber.web.avro;
/**
* @author zzx
* @creat 2020-03-11-20:23
*/
@Configuration
@EnableKafka
public class AvroConfig {
@Value("${spring.kafka.bootstrap-servers}")
private String bootstrapServers;
@Value("${spring.kafka.producer.max-request-size}")
private String maxRequestSize;
@Bean
public Map<String, Object> avroProducerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ProducerConfig.MAX_REQUEST_SIZE_CONFIG, maxRequestSize);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, AvroSerializer.class);
return props;
}
@Bean
public ProducerFactory<String, ElectronicsPackage> elProducerFactory() {
return new DefaultKafkaProducerFactory<>(avroProducerConfigs());
}
@Bean
public KafkaTemplate<String, ElectronicsPackage> elKafkaTemplate() {
return new KafkaTemplate<>(elProducerFactory());
}
}
五、通过 kafkaTemplate 发送消息
最后就是通过 Controller类调用 kafkaTemplate 的 send 方法接受一个Avro electronicsPackage对象作为输入。请注意,我们还更新了 kafkaTemplate 泛型类型。
package com.yd.cyber.web.controller.aggregation;
import com.yd.cyber.protocol.avro.ElectronicsPackage;
import com.yd.cyber.web.vo.ElectronicsPackageVO;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.BeanUtils;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import javax.annotation.Resource;
/**
* <p>
* InnoDB free: 4096 kB 前端控制器
* </p>
*
* @author zzx
* @since 2020-04-19
*/
@RestController
@RequestMapping("/electronicsPackageTbl")
public class ElectronicsPackageController {
//日誌
private static final Logger log = LoggerFactory.getLogger(ElectronicsPackageController.class);
@Resource
private KafkaTemplate<String,ElectronicsPackage> kafkaTemplate;
@GetMapping("/push")
public void push(){
ElectronicsPackageVO electronicsPackageVO = new ElectronicsPackageVO();
electronicsPackageVO.setElectId(9);
electronicsPackageVO.setAggregatPackageCode("9");
electronicsPackageVO.setCode1("9");
electronicsPackageVO.setEndAllocateCode("9");
electronicsPackageVO.setFrsSiteCodeType("9");
electronicsPackageVO.setFrsSiteCode("9");
electronicsPackageVO.setPackageNumber("9");
ElectronicsPackage electronicsPackage = new ElectronicsPackage();
BeanUtils.copyProperties(electronicsPackageVO,electronicsPackage);
//发送消息
kafkaTemplate.send("Electronics_Package",electronicsPackage);
log.info("Electronics_Package TOPIC 发送成功");
}
}
六、从 Kafka主题消费 Avro消息反序列化
收到的消息需要反序列化为 Avro格式。为此,我们创建一个 AvroDeserializer 实现该 Deserializer接口的类。该 deserialize()方法将主题名称和Byte数组作为输入,然后将其解码回Avro对象。从 targetType类参数中检索需要用于解码的模式,该类参数需要作为参数传递给 AvroDeserializer构造函数。
package com.yd.cyber.web.avro;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.Arrays;
import java.util.Map;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.BinaryDecoder;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.specific.SpecificRecordBase;
import org.apache.kafka.common.errors.SerializationException;
import org.apache.kafka.common.serialization.Deserializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.xml.bind.DatatypeConverter;
/**
* avro反序列化
* @author fuyx
* @creat 2020-03-12-15:19
*/
public class AvroDeserializer<T extends SpecificRecordBase> implements Deserializer<T> {
//日志系统
private static final Logger LOGGER = LoggerFactory.getLogger(AvroDeserializer.class);
protected final Class<T> targetType;
public AvroDeserializer(Class<T> targetType) {
this.targetType = targetType;
}
@Override
public void close() {}
@Override
public void configure(Map<String, ?> arg0, boolean arg1) {}
@Override
public T deserialize(String topic, byte[] data) {
try {
T result = null;
if(data == null) {
return null;
}
LOGGER.debug("data='{}'", DatatypeConverter.printHexBinary(data));
ByteArrayInputStream in = new ByteArrayInputStream(data);
DatumReader<GenericRecord> userDatumReader = new SpecificDatumReader<>(targetType.newInstance().getSchema());
BinaryDecoder decoder = DecoderFactory.get().directBinaryDecoder(in, null);
result = (T) userDatumReader.read(null, decoder);
LOGGER.debug("deserialized data='{}'", result);
return result;
} catch (Exception ex) {
throw new SerializationException(
"Can't deserialize data '" + Arrays.toString(data) + "' from topic '" + topic + "'", ex);
} finally {
}
}
}
七、反序列化的配置类
我将反序列化的配置和序列化的配置都放置在 AvroConfig 配置类中。在 AvroConfig 需要被这样更新了AvroDeserializer用作值“VALUE_DESERIALIZER_CLASS_CONFIG”属性。我们还更改了 ConsumerFactory 和 ConcurrentKafkaListenerContainerFactory通用类型,以使其指定 ElectronicsPackage 而不是 String。将 DefaultKafkaConsumerFactory 通过1个新的创造 AvroDeserializer 是需要 “User.class”作为构造函数的参数。需要使用Class<> targetType,AvroDeserializer 以将消费 byte[]对象反序列化为适当的目标对象(在此示例中为 ElectronicsPackage 类)。
@Configuration
@EnableKafka
public class AvroConfig {
@Value("${spring.kafka.bootstrap-servers}")
private String bootstrapServers;
@Value("${spring.kafka.producer.max-request-size}")
private String maxRequestSize;
@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, AvroDeserializer.class);
props.put(ConsumerConfig.GROUP_ID_CONFIG, "avro");
return props;
}
@Bean
public ConsumerFactory<String, ElectronicsPackage> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs(), new StringDeserializer(),
new AvroDeserializer<>(ElectronicsPackage.class));
}
@Bean
public ConcurrentKafkaListenerContainerFactory<String, ElectronicsPackage> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, ElectronicsPackage> factory =
new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;
}
}
八、消费者消费消息
消费者通过 @KafkaListener 监听对应的 Topic ,这里需要注意的是,网上直接获取对象的参数传的是对象,比如这里可能需要传入 ElectronicsPackage 类,但是我这样写的时候,error日志总说是返回序列化的问题,所以我使用 GenericRecord 对象接收,也就是我反序列化中定义的对象,是没有问题的。然后我将接收到的消息通过 mybatisplus 存入到数据库。
package com.zzx.cyber.web.controller.dataSource.intercompany;
import com.zzx.cyber.web.service.ElectronicsPackageService;
import com.zzx.cyber.web.vo.ElectronicsPackageVO;
import org.apache.avro.generic.GenericRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.BeanUtils;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Controller;
import javax.annotation.Resource;
/**
* @desc:
* @author: zzx
* @creatdate 2020/4/1912:21
*/
@Controller
public class ElectronicsPackageConsumerController {
//日志
private static final Logger log = LoggerFactory.getLogger(ElectronicsPackageConsumerController.class);
//服务层
@Resource
private ElectronicsPackageService electronicsPackageService;
/**
* 扫描数据测试
* @param genericRecordne
*/
@KafkaListener(topics = {"Electronics_Package"})
public void receive(GenericRecord genericRecordne) throws Exception {
log.info("数据接收:electronicsPackage + "+ genericRecordne.toString());
//业务处理类,mybatispuls 自动生成的类
ElectronicsPackageVO electronicsPackageVO = new ElectronicsPackageVO();
//将收的数据复制过来
BeanUtils.copyProperties(genericRecordne,electronicsPackageVO);
try {
//落库
log.info("数据入库");
electronicsPackageService.save(electronicsPackageVO);
} catch (Exception e) {
throw new Exception("插入异常"+e);
}
}
}
原文地址:https://blog.csdn.net/m0_74823683/article/details/145272613
免责声明:本站文章内容转载自网络资源,如侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!