自学内容网 自学内容网

BERT的中文问答系统65

完善BERT的中文问答系统64后的代码
简述
异常处理:增加了更多的异常处理,确保程序在遇到错误时能够优雅地退出或提示用户。
多线程:使用 threading 模块处理耗时操作,避免阻塞主界面。
配置文件管理:优化了配置文件的读取和写入,确保配置文件的完整性和安全性。
日志记录:增强了日志记录功能,记录更多详细的日志信息,便于调试和维护。
用户反馈:增加了更多的用户反馈机制,如进度条、提示信息等,提高用户体验。
模型保存与加载:优化了模型的保存和加载过程,确保模型的完整性和可恢复性。
数据加载:优化了数据加载过程,确保数据的完整性和正确性。
界面美化:优化了界面布局和样式,提高了界面的美观度和可用性。
新增功能:在GUI中增加了多个按钮,分别对应不同的模型类型,点击按钮会自动完成数据集收集及模型训练保存等操作。
代码

import os
import json
import jsonlines
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertModel, BertTokenizer
import tkinter as tk
from tkinter import filedialog, messagebox, ttk, simpledialog
import logging
from difflib import SequenceMatcher
from datetime import datetime
import requests
from bs4 import BeautifulSoup
import tkcalendar
import locale
import threading
import configparser

# 设置本地化为中文
locale.setlocale(locale.LC_ALL, 'zh_CN.UTF-8')

# 获取项目根目录
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))

# 配置日志
LOGS_DIR = os.path.join(PROJECT_ROOT, 'logs')
os.makedirs(LOGS_DIR, exist_ok=True)

def setup_logging():
    log_file = os.path.join(LOGS_DIR, datetime.now().strftime('%Y-%m-%d_%H-%M-%S_羲和.txt'))
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler(log_file),
            logging.StreamHandler()
        ]
    )

setup_logging()

# 数据集类
class XihuaDataset(Dataset):
    def __init__(self, file_path, tokenizer, max_length=128):
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.data = self.load_data(file_path)

    def load_data(self, file_path):
        try:
            if file_path.endswith('.jsonl'):
                with jsonlines.open(file_path) as reader:
                    return [item for item in reader]
            elif file_path.endswith('.json'):
                with open(file_path, 'r') as f:
                    return json.load(f)
        except (json.JSONDecodeError, jsonlines.jsonlines.InvalidLineError) as e:
            logging.warning(f"加载数据失败: {
     e}")
            return []

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        question = item.get('question', '')
        human_answer = item.get('human_answers', [''])[0]
        chatgpt_answer = item.get('chatgpt_answers', [''])[0]

        try:
            inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
            human_inputs = self.tokenizer(human_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
            chatgpt_inputs = self.tokenizer(chatgpt_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
        except Exception as e:
            logging.warning(f"跳过无效项 {
     idx}: {
     e}")
            return self.__getitem__((idx + 1) % len(self.data))

        return {
   
            'input_ids': inputs['input_ids'].squeeze(),
            'attention_mask': inputs['attention_mask'].squeeze(),
            'human_input_ids': human_inputs['input_ids'].squeeze(),
            'human_attention_mask': human_inputs['attention_mask'].squeeze(),
            'chatgpt_input_ids': chatgpt_inputs['input_ids'].squeeze(),
            'chatgpt_attention_mask': chatgpt_inputs['attention_mask'].squeeze(),
            'human_answer': human_answer,
            'chatgpt_answer': chatgpt_answer
        }

# 获取数据加载器
def get_data_loader(file_path, tokenizer, batch_size=8, max_length=128):
    dataset = XihuaDataset(file_path, tokenizer, max_length)
    return DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 模型定义
class XihuaModel(torch.nn.Module):
    def __init__(self, pretrained_model_name):
        super(XihuaModel, self).__init__()
        self.bert = BertModel.from_pretrained(pretrained_model_name)
        self.classifier = torch.nn.Linear(self.bert.config.hidden_size, 1)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs.pooler_output
        logits = self.classifier(pooled_output)
        return logits

# 训练函数
def train(model, data_loader, optimizer, criterion, device, progress_var=None):
    model.train()
    total_loss = 0.0
    num_batches = len(data_loader)
    for batch_idx, batch in enumerate(data_loader):
        try:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            human_input_ids = batch['human_input_ids'].to(device)
            human_attention_mask = batch['human_attention_mask'].to(device)
            chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)
            chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)

            optimizer.zero_grad()
            human_logits = model(human_input_ids, human_attention_mask)
            chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)

            human_labels = torch.ones(human_logits.size(0), 1).to(device)
            chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)

            loss = criterion(human_logits, human_labels) + criterion(chatgpt_logits, chatgpt_labels)
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            if progress_var:
                progress_var.set((batch_idx + 1) / num_batches * 100)
        except Exception as e:
            logging.warning(f"跳过无效批次: {
     e}")

    return total_loss / len(data_loader)

# 模型评估函数
def evaluate_model(model, data_loader, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for batch in data_loader:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            human_input_ids = batch['human_input_ids'].to(device)
            human_attention_mask = batch['human_attention_mask'].to(device)
            chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)
            chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)

            human_logits = model(human_input_ids, human_attention_mask)
            chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)

            human_labels = torch.ones(human_logits.size(0), 1).to(device)
            chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)

            human_correct = (torch.sigmoid(human_logits) > 0.5).float() == human_labels
            chatgpt_correct = (torch.sigmoid(chatgpt_logits) > 0.5).float

原文地址:https://blog.csdn.net/weixin_54366286/article/details/145119047

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!