抬手、放手识别算法
在一款智能手表中, 平时手表处于息屏的状态, 用于节省功耗,延长使用时间。 在用户进行抬手的时候,其实是希望能够及时看一下时间、消息通知等信息的。这时手表应该能够检测到用户的抬手动作,自动进行屏幕的点亮。当用户垂手返回的时候,也应该识别到,及时进行屏幕的关闭。
对于这种动作的侦测,采用加速度传感器,是常见的选择。加速度传感采用固定的频率,进行X轴、Y轴、Z轴三轴数据的采集,放置在FIFO队列中, MCU可以定期去获取这些数据, 对于这些数据进行处理和特征识别。 当识别出抬手、放手时,进行相应的逻辑处理。
1. 数据
这个特征是怎么样的呢?我们可以先看一下,在反复进行抬手、放手动作时,所抓取到的数据。
wrist_algo_timeout_handler(82): 1730099274701: wrist: i = 0, x = -8.842969, y = 2.871094, z = 0.976172
wrist_algo_timeout_handler(82): 1730099274703: wrist: i = 1, x = -8.842969, y = 2.890234, z = 0.899609
wrist_algo_timeout_handler(82): 1730099274705: wrist: i = 2, x = -8.823829, y = 2.909375, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274707: wrist: i = 3, x = -8.862109, y = 2.928516, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274710: wrist: i = 4, x = -8.900391, y = 2.947656, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274712: wrist: i = 5, x = -8.900391, y = 2.966797, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274714: wrist: i = 6, x = -8.900391, y = 2.966797, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274716: wrist: i = 7, x = -8.881250, y = 2.909375, z = 0.842188
wrist_algo_timeout_handler(82): 1730099274719: wrist: i = 8, x = -8.919532, y = 2.947656, z = 0.842188
wrist_algo_timeout_handler(82): 1730099274721: wrist: i = 9, x = -8.919532, y = 2.966797, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274723: wrist: i = 10, x = -8.957812, y = 2.966797, z = 0.899609
wrist_algo_timeout_handler(82): 1730099274726: wrist: i = 11, x = -8.900391, y = 2.928516, z = 0.899609
wrist_algo_timeout_handler(82): 1730099274728: wrist: i = 12, x = -8.938672, y = 2.947656, z = 0.880469
wrist_algo_timeout_handler(82): 1730099274730: wrist: i = 13, x = -8.957812, y = 2.909375, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274733: wrist: i = 14, x = -8.957812, y = 2.928516, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274735: wrist: i = 15, x = -8.976954, y = 2.966797, z = 0.880469
wrist_algo_timeout_handler(82): 1730099274737: wrist: i = 16, x = -8.996094, y = 3.005078, z = 0.823047
wrist_algo_timeout_handler(82): 1730099274739: wrist: i = 17, x = -9.034375, y = 3.024219, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274742: wrist: i = 18, x = -8.957812, y = 3.062500, z = 0.861328
wrist_algo_timeout_handler(82): 1730099274744: wrist: i = 19, x = -8.996094, y = 3.062500, z = 0.880469
wrist_algo_timeout_handler(82): 1730099274746: wrist: i = 20, x = -8.919532, y = 3.024219, z = 0.880469
wrist_algo_timeout_handler(82): 1730099274749: wrist: i = 21, x = -8.900391, y = 3.043360, z = 0.880469
wrist_algo_timeout_handler(82): 1730099274751: wrist: i = 22, x = -8.919532, y = 3.024219, z = 0.880469
wrist_algo_timeout_handler(82): 1730099274753: wrist: i = 23, x = -8.996094, y = 3.043360, z = 0.899609
wrist_algo_timeout_handler(82): 1730099274756: wrist: i = 24, x = -8.938672, y = 3.043360, z = 0.995313
wrist_algo_timeout_handler(82): 1730099275212: wrist: i = 0, x = -8.919532, y = 3.005078, z = 1.014453
wrist_algo_timeout_handler(82): 1730099275214: wrist: i = 1, x = -8.976954, y = 3.024219, z = 1.033594
wrist_algo_timeout_handler(82): 1730099275216: wrist: i = 2, x = -8.919532, y = 3.005078, z = 1.033594
wrist_algo_timeout_handler(82): 1730099275218: wrist: i = 3, x = -8.900391, y = 3.024219, z = 1.052734
wrist_algo_timeout_handler(82): 1730099275221: wrist: i = 4, x = -8.881250, y = 2.947656, z = 1.014453
wrist_algo_timeout_handler(82): 1730099275223: wrist: i = 5, x = -8.862109, y = 2.947656, z = 1.014453
wrist_algo_timeout_handler(82): 1730099275225: wrist: i = 6, x = -8.938672, y = 2.966797, z = 0.995313
wrist_algo_timeout_handler(82): 1730099275228: wrist: i = 7, x = -8.976954, y = 3.005078, z = 0.976172
wrist_algo_timeout_handler(82): 1730099275230: wrist: i = 8, x = -8.957812, y = 3.005078, z = 0.995313
wrist_algo_timeout_handler(82): 1730099275232: wrist: i = 9, x = -8.957812, y = 2.966797, z = 0.957031......................................................
2. 波形
对于三轴的数据, 我们可以进行波形绘制, 观察出具体的特征。
import os
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MultipleLocator
#从Log中解析出来X、Y、Z三轴的原始数据
raw_data_file = "data/data.txt"
count = 0
lineNo = 0
listX = []
listY = []
listZ = []
listV = []
with open(raw_data_file, 'r', encoding='utf-8') as fread:
for text in fread.readlines():
lineNo += 1
xyz = text.split(',')
xyz.pop(0)
x = xyz.pop(0)
y = xyz.pop(0)
z = xyz.pop(0)
dataX = float(x[4:])
dataY = float(y[4:])
dataZ = float(z[4:])
dataV = np.sqrt(dataX*dataX + dataY*dataY +dataZ*dataZ)
listX.append(dataX)
listY.append(dataY)
listZ.append(dataZ)
listV.append(dataV)
count += 1
print("count no : " + str(count))
plt.figure()
ax=plt.subplot(1,1,1)
ax.plot(listX[0:count], label='X', color='red')
ax.plot(listY[0:count], label='Y', color='blue')
ax.plot(listZ[0:count], label='Z', color='green')
ax.grid(True)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.yaxis.set_major_locator(MultipleLocator(1))
plt.show()
具体的波形,可以如下图:
.
可以截取一段,看得更加清楚:
3. 算法
主要的算法依据是,当手臂下垂时,假设X轴垂直于表盘,Z轴垂直于地面,如果处于静止状态,则X轴的值为0g, Z轴为1g,当抬手转动到用户面前的时候,这时,X轴的值为1g,Z轴的值为0g, 当垂手灭屏的时候,与之相反,所以,需要重点关注两个轴向的数据变化,则可以实现抬手、垂手这两个动作的识别。
下面我们介绍采用代码进行动作识别的过程。
# 1. 进行滤波
# 2. 进行动态阈值
# 3. 进行动态精度
# 4. 判断峰值,侦测动作类型
一些全局的变量定义如下:
class peak_value:
def __init__(self):
self.newMax = 0.0
self.newMin = 0.0
self.oldMax = 0.0
self.oldMin = 0.0
SAMPLE_SIZE = 100
DYNAMIC_PRECISION = 0.01
FILTER_CNT = 4
NULL = 0
UP = 1
DOWN = 2
MAXTIMEOUT = 10 #翻腕时间阈值设定为400ms
THRESHOLD = 2.0 #翻腕的值应该超过1.0g
DELAYCOUNT = 10 #应该延迟几个点进行判断
filtered_sample_x = 0.0
filter_fifo_x = []
filtered_sample_z = 0.0
filter_fifo_z = []
peak_x = peak_value()
peak_z = peak_value()
threshold_x = 0.0
threshold_z = 0.0
th_x = []
th_z = []
sample_size_x = 0
sample_size_z = 0
newSample_x = 0.0
oldSample_x = 0.0
newSample_z = 0.0
oldSample_z = 0.0
hand_on = 0
hand_off = 0
timeCount = 0
lastTimeCount_x = 0
lastTimeCount_z = 0
timeInterval_x = 0
timeInterval_z = 0
x_status = NULL
z_status = NULL
def MAX(a, b):
if (a>b):
return a
else:
return b
def MIN(a, b):
if (a<b):
return a
else:
return b
3.1 滤波
滤波的方式有很多种, 在这里我们采用均值滤波, 可以消除一下毛刺。不能过滤的过于平滑, 会失去特征。
#进行均值滤波
def filter_calculate_x(sample_x):
global filtered_sample_x, filter_fifo_x
filter_fifo_x.pop(0)
filter_fifo_x.append(sample_x)
x_sum = 0.0
for i in range(0, FILTER_CNT):
x_sum += filter_fifo_x[i]
filtered_sample_x = x_sum/FILTER_CNT
def filter_calculate_z(sample_z):
global filtered_sample_z, filter_fifo_z
filter_fifo_z.pop(0)
filter_fifo_z.append(sample_z)
z_sum = 0.0
for i in range(0, FILTER_CNT):
z_sum += filter_fifo_z[i]
filtered_sample_z = z_sum/FILTER_CNT
3.2 动态阈值
一个轴向上从0G到1G,另一个轴向上从1G到0G,这是比较理想的情况, 其实用户在佩戴过程中, 是不会有这么准确的值的。应该是采用动态阈值的情况,不能采用绝对的值。
#采用设置动态阈值的方式
sample_fifo_x = []
def peak_update_x(cur_sample_x):
global sample_size_x, peak_x, threshold_x, sample_fifo_x
sample_fifo_x.append(cur_sample_x)
sample_size_x += 1
if (sample_size_x >= SAMPLE_SIZE):
peak_x.newMax = sample_fifo_x[0]
peak_x.newMin = sample_fifo_x[0]
for i in range(0, SAMPLE_SIZE):
peak_x.newMax = MAX(peak_x.newMax, sample_fifo_x[i])
peak_x.newMin = MIN(peak_x.newMin, sample_fifo_x[i])
peak_x.oldMax = peak_x.newMax
peak_x.oldMin = peak_x.newMin
threshold_x = (peak_x.oldMax + peak_x.oldMin)/2
sample_fifo_x.pop(0)
sample_fifo_z = []
def peak_update_z(cur_sample_z):
global sample_size_z, peak_z, threshold_z, sample_fifo_z
sample_fifo_z.append(cur_sample_z)
sample_size_z += 1
if (sample_size_z >= SAMPLE_SIZE):
peak_z.newMax = sample_fifo_z[0]
peak_z.newMin = sample_fifo_z[0]
for i in range(0, SAMPLE_SIZE):
peak_z.newMax = MAX(peak_z.newMax, sample_fifo_z[i])
peak_z.newMin = MIN(peak_z.newMin, sample_fifo_z[i])
peak_z.oldMax = peak_z.newMax
peak_z.oldMin = peak_z.newMin
threshold_z = (peak_z.oldMax + peak_z.oldMin)/2
sample_fifo_z.pop(0)
3.3 动态精度
对于相邻的点,如果变化很小, 可以丢弃掉。
#动态精度
def slide_update_x(cur_sample_x):
res = False
global newSample_x, oldSample_x
if (abs(cur_sample_x - newSample_x) > DYNAMIC_PRECISION):
oldSample_x = newSample_x
newSample_x = cur_sample_x
res = True
else:
oldSample_x = newSample_x
return res
def slide_update_z(cur_sample_z):
res = False
global newSample_z, oldSample_z
if (abs(cur_sample_z - newSample_z) > DYNAMIC_PRECISION):
oldSample_z = newSample_z
newSample_z = cur_sample_z
res = True
else:
oldSample_z = newSample_z
return res
3.4 动作识别
对于一段数据,设置完阈值后,进行两轴向数据的判断,从而识别出抬手、放手的动作。
#姿态判断
def detect_tilt():
global hand_on, hand_off, oldSample_x, oldSample_z, newSample_x, newSample_z, threshold_x, threshold_z, lastTimeCount_x, lastTimeCount_z, timeInterval_x, timeInterval_z, x_status, z_status, timeCount
timeInterval_x = timeCount - lastTimeCount_x
timeInterval_z = timeCount - lastTimeCount_z
if (timeInterval_x > MAXTIMEOUT):
x_status = NULL
if (timeInterval_z > MAXTIMEOUT):
z_status = NULL
if (np.abs(newSample_x - peak_x.oldMax) >= THRESHOLD or np.abs(newSample_x - peak_x.oldMin) >= THRESHOLD):
if (oldSample_x > threshold_x and newSample_x < threshold_x):
x_status = DOWN
lastTimeCount_x = timeCount
#print("x down : " + str(timeCount))
if (oldSample_x < threshold_x and newSample_x > threshold_x):
x_status = UP
lastTimeCount_x = timeCount
#print("x up : " + str(timeCount))
if (np.abs(newSample_z - peak_z.oldMax)>= THRESHOLD or np.abs(newSample_z - peak_z.oldMin) >= THRESHOLD):
if (oldSample_z > threshold_z and newSample_z < threshold_z):
z_status = DOWN
lastTimeCount_z = timeCount
#print("z down : " + str(timeCount))
if (oldSample_z < threshold_z and newSample_z > threshold_z):
z_status = UP
lastTimeCount_z = timeCount
#print("z up : " + str(timeCount))
if (x_status == UP and z_status == DOWN):
hand_on += 1
print("timeCount : " + str(timeCount))
print("hand on : " + str(hand_on))
x_status = NULL
z_status = NULL
if (x_status == DOWN and z_status == UP):
hand_off += 1
print("timeCount : " + str(timeCount) )
print("hand off : " + str(hand_off))
x_status = NULL
z_status = NULL
这几个函数的具体调用过程,如下:
#进行第一次X轴、Z轴阈值设定
peak_x.newMax = listX[0]
peak_x.newMin = listX[0]
peak_x.oldMax = listX[0]
peak_x.oldMin = listX[0]
peak_z.newMax = listZ[0]
peak_z.newMin = listZ[0]
peak_z.oldMax = listZ[0]
peak_z.oldMin = listZ[0]
for i in range(0, SAMPLE_SIZE):
cur_sample_x = listX[i]
cur_sample_z = listZ[i]
peak_update_x(cur_sample_x)
peak_update_z(cur_sample_z)
#设定第一个滤波器的数据
for i in range(0, FILTER_CNT):
cur_sample_x = listX[i]
cur_sample_z = listZ[i]
filter_fifo_x.append(cur_sample_x)
filter_fifo_z.append(cur_sample_z)
#循环获取Sample的点, 进行动态阈值的更新, 抬手+垂手动作姿势的侦测
mean_listX = []
mean_listY = []
mean_listZ = []
listX_buffer = []
listZ_buffer = []
for i in range(0, count):
timeCount += 1
cur_sample_x = listX[i]
cur_sample_z = listZ[i]
filter_calculate_x(cur_sample_x)
filter_calculate_z(cur_sample_z)
peak_update_x(filtered_sample_x)
peak_update_z(filtered_sample_z)
th_x.append(threshold_x)
th_z.append(threshold_z)
listX_buffer.append(filtered_sample_x)
listZ_buffer.append(filtered_sample_z)
if (timeCount > DELAYCOUNT):
x = listX_buffer.pop(0)
z = listZ_buffer.pop(0)
mean_listX.append(x)
mean_listZ.append(z)
slide_update_x(x)
slide_update_z(z)
detect_tilt()
print("hand on : " + str(hand_on))
print("hand off : " + str(hand_off))
3.5 波形示意
可以把增加了动态阈值,和滤波后的波形,与原始波形进行对比, 如下所示:
#绘制波形
#前面几个值要补齐
for i in range(0, DELAYCOUNT):
mean_listX.insert(0, 0.0)
mean_listZ.insert(0, 0.0)
count = len(mean_listX)
plt.figure()
ax=plt.subplot(1,1,1)
ax.plot(mean_listX[0:count], label='X', color='red')
ax.plot(th_x[0:count], ls = "--", label='th_x', color = 'red')
ax.plot(mean_listZ[0:count], label='Z', color='green')
ax.plot(th_z[0:count], ls = "--", label='th_z', color = 'green')
ax.grid(True)
ax.xaxis.set_major_locator(MultipleLocator(10))
ax.yaxis.set_major_locator(MultipleLocator(1))
plt.show()
原文地址:https://blog.csdn.net/hsm2000/article/details/144993779
免责声明:本站文章内容转载自网络资源,如侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!