自学内容网 自学内容网

【高等数学】多元微分学(二)

隐函数的偏导数

二元方程的隐函数

F ( x , y ) = 0 F(x,y)=0 F(x,y)=0

推出隐函数形式 y = y ( x ) y=y(x) y=y(x). 欲求 d y d x \frac{d y}{d x} dxdy 需要对 F = 0 F=0 F=0 两边同时对 x x x 求全导

0 = d d x F ( x , y ( x ) ) = ∂ F ∂ x d x d x + ∂ F ∂ y d y d x = ∂ F ∂ x d x d x + ∂ F ∂ y d y d x 0 = \frac{d}{dx} F(x,y(x))= \frac{\partial F}{\partial x} \frac{dx}{dx}+\frac{\partial F}{\partial y} \frac{dy}{dx}=\frac{\partial F}{\partial x} \frac{dx}{dx}+\frac{\partial F}{\partial y} \frac{dy}{dx} 0=dxdF(x,y(x))=xFdxdx+yFdxdy=xFdxdx+yFdxdy

求出 d y d x = − ∂ F ∂ x ∂ F ∂ y \frac{dy}{dx}= -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} dxdy=yFxF

F
x
x
y

三元方程(组)的隐函数

三元方程

F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0,

推出隐函数形式 z = z ( x , y ) z=z(x,y) z=z(x,y). 欲求 ∂ z ∂ x \frac{\partial z}{\partial x} xz 需要对 F = 0 F=0 F=0 两边同时对 x x x 求偏导

0 = ∂ F ∂ x + ∂ F ∂ z ∂ z ∂ x 0=\frac{\partial F}{\partial x} +\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} 0=xF+zFxz

求出 ∂ z ∂ x = − ∂ F ∂ x ∂ F ∂ z \frac{\partial z}{\partial x}= -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} xz=zFxF

F
x
z
y
x
y

两个三元方程

F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0, G ( x , y , z ) = 0 G(x,y,z)=0 G(x,y,z)=0

推出隐函数形式 z = z ( x ) , y = y ( x ) z=z(x), y=y(x) z=z(x),y=y(x) 欲求 d z d x \frac{d z}{dx} dxdz 需要对 F = 0 , G = 0 F=0,G=0 F=0,G=0 两边同时对 x x x 求全导

0 = ∂ F ∂ x + ∂ F ∂ y d y d x + ∂ F ∂ z d z d x 0=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}\frac{dy}{dx}+\frac{\partial F}{\partial z}\frac{dz}{dx} 0=xF+yFdxdy+zFdxdz

0 = ∂ G ∂ x + ∂ G ∂ y d y d x + ∂ G ∂ z d z d x 0=\frac{\partial G}{\partial x}+\frac{\partial G}{\partial y}\frac{dy}{dx}+\frac{\partial G}{\partial z}\frac{dz}{dx} 0=xG+yGdxdy+zGdxdz

根据克拉姆法则,

J = ∂ ( F , G ) ∂ ( y , z ) = ∣ ∂ F ∂ y ∂ F ∂ z ∂ G ∂ y ∂ G ∂ z ∣ J=\frac{\partial (F,G)}{\partial(y,z)}= \left|\begin{array}{c c} \frac{\partial F}{\partial y} &\frac{\partial F}{\partial z} \\\\ \frac{\partial G}{\partial y} &\frac{\partial G}{\partial z}\end{array}\right| J=(y,z)(F,G)= yFyGzFzG

d y d x = − 1 J ∂ ( F , G ) ∂ ( x , z ) \frac{d y}{d x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (x,z)} dxdy=J1(x,z)(F,G) d z d x = − 1 J ∂ ( F , G ) ∂ ( y , x ) \frac{d z}{d x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (y,x)} dxdz=J1(y,x)(F,G)

F,G
x
z
y
x

四元方程(组)的隐函数

四元函数方程

F ( x , y , z , w ) = 0 F(x,y,z,w)=0 F(x,y,z,w)=0,

推出隐函数形式 w = w ( x , y , z ) w=w(x,y,z) w=w(x,y,z)

0 = ∂ F ∂ x + ∂ F ∂ w ∂ w ∂ x 0= \frac{\partial F}{\partial x}+\frac{\partial F}{\partial w} \frac{\partial w}{\partial x} 0=xF+wFxw 求出

∂ w ∂ x = − ∂ F ∂ x ∂ F ∂ w \frac{\partial w}{\partial x}= - \frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial w}} xw=wFxF 类似的

∂ w ∂ y = − ∂ F ∂ y ∂ F ∂ w \frac{\partial w}{\partial y}= - \frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial w}} yw=wFyF ∂ w ∂ z = − ∂ F ∂ z ∂ F ∂ w \frac{\partial w}{\partial z}= - \frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial w}} zw=wFzF

F
x
y
z
w
x
y
z

两个四元函数方程组

F ( x , y , z , w ) = 0 F(x,y,z,w)=0 F(x,y,z,w)=0, G ( x , y , z , w ) = 0 G(x,y,z,w)=0 G(x,y,z,w)=0 推出隐函数形式 z = z ( x , y ) z=z(x,y) z=z(x,y), w = w ( x , y ) w=w(x,y) w=w(x,y)

0 = ∂ F ∂ x + ∂ F ∂ z ∂ z ∂ x + ∂ F ∂ w ∂ w ∂ x 0=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}+\frac{\partial F}{\partial w} \frac{\partial w}{\partial x} 0=xF+zFxz+wFxw

0 = ∂ G ∂ x + ∂ G ∂ z ∂ z ∂ x + ∂ G ∂ w ∂ w ∂ x 0=\frac{\partial G}{\partial x}+\frac{\partial G}{\partial z} \frac{\partial z}{\partial x}+\frac{\partial G}{\partial w} \frac{\partial w}{\partial x} 0=xG+zGxz+wGxw

根据克拉姆法则, J = ∂ ( F , G ) ∂ ( z , w ) = ∣ ∂ F ∂ z ∂ F ∂ w ∂ G ∂ z ∂ G ∂ w ∣ J=\frac{\partial (F,G)}{\partial(z,w)}= \left|\begin{matrix}\frac{\partial F}{\partial z} &\frac{\partial F}{\partial w}\\\\\frac{\partial G}{\partial z} &\frac{\partial G}{\partial w}\end{matrix}\right| J=(z,w)(F,G)= zFzGwFwG

∂ z ∂ x = − 1 J ∂ ( F , G ) ∂ ( x , w ) \frac{\partial z}{\partial x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (x,w)} xz=J1(x,w)(F,G) ∂ w ∂ x = − 1 J ∂ ( F , G ) ∂ ( z , x ) \frac{\partial w}{\partial x} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (z,x)} xw=J1(z,x)(F,G)

类似的由 0 = ∂ F ∂ y + ∂ F ∂ z ∂ z ∂ y + ∂ F ∂ w ∂ w ∂ y 0=\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}+\frac{\partial F}{\partial w} \frac{\partial w}{\partial y} 0=yF+zFyz+wFyw 0 = ∂ G ∂ y + ∂ G ∂ z ∂ z ∂ y + ∂ G ∂ w ∂ w ∂ y 0=\frac{\partial G}{\partial y}+\frac{\partial G}{\partial z} \frac{\partial z}{\partial y}+\frac{\partial G}{\partial w} \frac{\partial w}{\partial y} 0=yG+zGyz+wGyw 得到

∂ z ∂ y = − 1 J ∂ ( F , G ) ∂ ( y , w ) \frac{\partial z}{\partial y} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (y,w)} yz=J1(y,w)(F,G) ∂ w ∂ y = − 1 J ∂ ( F , G ) ∂ ( z , y ) \frac{\partial w}{\partial y} = -\frac{1}{J} \frac{\partial (F, G)}{\partial (z,y)} yw=J1(z,y)(F,G)

F,G
x
z
w
y
x
y

三个四元函数方程组

F ( x , y , z , w ) = 0 F(x,y,z,w)=0 F(x,y,z,w)=0, G ( x , y , z , w ) = 0 G(x,y,z,w)=0 G(x,y,z,w)=0, H ( x , y , z , w ) = 0 H(x,y,z,w)=0 H(x,y,z,w)=0.

推出隐函数形式 y = y ( x ) , z = z ( x ) , w = w ( x ) y=y(x), z=z(x), w=w(x) y=y(x),z=z(x),w=w(x)

0 = ∂ F ∂ x + ∂ F ∂ y d y d x + ∂ F ∂ z d z d x + ∂ F ∂ w d w d x 0=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}+\frac{\partial F}{\partial z} \frac{d z}{d x}+\frac{\partial F}{\partial w} \frac{d w}{d x} 0=xF+yFdxdy+zFdxdz+wFdxdw

0 = ∂ G ∂ x + ∂ G ∂ y d y d x + ∂ G ∂ z d z d x + ∂ G ∂ w d w d x 0=\frac{\partial G}{\partial x}+\frac{\partial G}{\partial y} \frac{d y}{d x}+\frac{\partial G}{\partial z} \frac{d z}{d x}+\frac{\partial G}{\partial w} \frac{d w}{d x} 0=xG+yGdxdy+zGdxdz+wGdxdw

0 = ∂ H ∂ x + ∂ H ∂ y d y d x + ∂ H ∂ z d z d x + ∂ H ∂ w d w d x 0=\frac{\partial H}{\partial x}+\frac{\partial H}{\partial y} \frac{d y}{d x}+\frac{\partial H}{\partial z} \frac{d z}{d x}+\frac{\partial H}{\partial w} \frac{d w}{d x} 0=xH+yHdxdy+zHdxdz+wHdxdw

由克拉姆法则,

J = ∂ ( F , G , H ) ∂ ( y , z , w ) = ∣ ∂ F ∂ y ∂ F ∂ z ∂ F ∂ w ∂ G ∂ y ∂ G ∂ z ∂ G ∂ w ∂ H ∂ y ∂ H ∂ z ∂ H ∂ w ∣ J= \frac{\partial(F, G, H)}{\partial (y,z,w)} = \left| \begin{array}{c c c} \frac{\partial F}{\partial y} &\frac{\partial F}{\partial z} & \frac{\partial F}{\partial w} \\\\ \frac{\partial G}{\partial y}&\frac{\partial G}{\partial z} &\frac{\partial G}{\partial w} \\\\ \frac{\partial H}{\partial y}&\frac{\partial H}{\partial z} &\frac{\partial H}{\partial w}\end{array}\right| J=(y,z,w)(F,G,H)= yFyGyHzFzGzHwFwGwH

d y d x = − 1 J ∂ ( F , G , H ) ∂ ( x , z , w ) \frac{d y}{d x}=-\frac{1}{J} \frac{\partial (F,G,H)}{\partial (x,z,w)} dxdy=J1(x,z,w)(F,G,H) d z d x = − 1 J ∂ ( F , G , H ) ∂ ( y , x , w ) \frac{d z}{d x}=-\frac{1}{J} \frac{\partial (F,G,H)}{\partial (y,x,w)} dxdz=J1(y,x,w)(F,G,H) d w d x = − 1 J ∂ ( F , G , H ) ∂ ( y , z , x ) \frac{d w}{d x}=-\frac{1}{J} \frac{\partial (F,G,H)}{\partial (y,z,x)} dxdw=J1(y,z,x)(F,G,H)

F,G,H
x
y
z
w
x

五元方程

两个五元方程

F ( x , y , z , u , v ) = 0 F(x,y,z,u,v)=0 F(x,y,z,u,v)=0, G ( x , y , z , u , v ) = 0 G(x,y,z,u,v)=0 G(x,y,z,u,v)=0

推出隐函数形式 u = u ( x , y , z ) , v = v ( x , y , z ) u=u(x,y,z), v=v(x,y,z) u=u(x,y,z),v=v(x,y,z), 对 F = 0 , G = 0 F=0, G=0 F=0,G=0 同时对 x x x 求偏微分

0 = ∂ F ∂ x + ∂ F ∂ u ∂ u ∂ x + ∂ F ∂ v ∂ v ∂ x 0= \frac{\partial F}{\partial x} + \frac{\partial F}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial F}{\partial v}\frac{\partial v}{\partial x} 0=xF+uFxu+vFxv 0 = ∂ G ∂ x + ∂ G ∂ u ∂ u ∂ x + ∂ G ∂ v ∂ v ∂ x 0= \frac{\partial G}{\partial x} + \frac{\partial G}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial G}{\partial v}\frac{\partial v}{\partial x} 0=xG+uGxu+vGxv

由克拉姆法则 J = ∂ ( F , G ) ∂ ( u , v ) J=\frac{\partial(F,G)}{\partial (u,v)} J=(u,v)(F,G), ∂ u ∂ x = − 1 J ∂ ( F , G ) ∂ ( x , v ) \frac{\partial u}{\partial x}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(x,v)} xu=J1(x,v)(F,G) ∂ v ∂ x = − 1 J ∂ ( F , G ) ∂ ( u , x ) \frac{\partial v}{\partial x}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,x)} xv=J1(u,x)(F,G)

类似的

∂ u ∂ y = − 1 J ∂ ( F , G ) ∂ ( y , v ) \frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(y,v)} yu=J1(y,v)(F,G) ∂ u ∂ y = − 1 J ∂ ( F , G ) ∂ ( u , y ) \frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,y)} yu=J1(u,y)(F,G)

∂ u ∂ z = − 1 J ∂ ( F , G ) ∂ ( z , v ) \frac{\partial u}{\partial z}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(z,v)} zu=J1(z,v)(F,G) ∂ u ∂ z = − 1 J ∂ ( F , G ) ∂ ( u , z ) \frac{\partial u}{\partial z}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,z)} zu=J1(u,z)(F,G)

F,G
x
u
z
v
y
x
y
z

三个五元方程

F ( x , y , z , u , v ) = 0 F(x,y,z,u,v)=0 F(x,y,z,u,v)=0, G ( x , y , z , u , v ) = 0 G(x,y,z,u,v)=0 G(x,y,z,u,v)=0, H ( x , y , z , u , v ) = 0 H(x,y,z,u,v)=0 H(x,y,z,u,v)=0

推出隐函数形式 z = z ( x , y ) , u = u ( x , y ) , v = v ( x , y ) z=z(x,y), u=u(x,y), v=v(x,y) z=z(x,y),u=u(x,y),v=v(x,y)

0 = ∂ F ∂ x + ∂ F ∂ z ∂ z ∂ x + ∂ F ∂ u ∂ u ∂ x + ∂ F ∂ v ∂ v ∂ x 0= \frac{\partial F}{\partial x} +\frac{\partial F}{\partial z}\frac{\partial z}{\partial x}+ \frac{\partial F}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial F}{\partial v}\frac{\partial v}{\partial x} 0=xF+zFxz+uFxu+vFxv

0 = ∂ G ∂ x + ∂ G ∂ z ∂ z ∂ x + ∂ G ∂ u ∂ u ∂ x + ∂ G ∂ v ∂ v ∂ x 0= \frac{\partial G}{\partial x} +\frac{\partial G}{\partial z}\frac{\partial z}{\partial x}+ \frac{\partial G}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial G}{\partial v}\frac{\partial v}{\partial x} 0=xG+zGxz+uGxu+vGxv

0 = ∂ H ∂ x + ∂ H ∂ z ∂ z ∂ x + ∂ H ∂ u ∂ u ∂ x + ∂ H ∂ v ∂ v ∂ x 0= \frac{\partial H}{\partial x} +\frac{\partial H}{\partial z}\frac{\partial z}{\partial x}+ \frac{\partial H}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial H}{\partial v}\frac{\partial v}{\partial x} 0=xH+zHxz+uHxu+vHxv

由克拉姆法则 J = ∂ ( F , G , H ) ∂ ( z , u , v ) J=\frac{\partial(F,G,H)}{\partial (z,u,v)} J=(z,u,v)(F,G,H),

∂ z ∂ x = − 1 J ∂ ( F , G , H ) ∂ ( x , u , v ) \frac{\partial z}{\partial x}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(x,u,v)} xz=J1(x,u,v)(F,G,H) ∂ u ∂ x = − 1 J ∂ ( F , G , H ) ∂ ( z , x , v ) \frac{\partial u}{\partial x}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(z,x,v)} xu=J1(z,x,v)(F,G,H) ∂ v ∂ x = − 1 J ∂ ( F , G , H ) ∂ ( z , u , x ) \frac{\partial v}{\partial x}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(z,u,x)} xv=J1(z,u,x)(F,G,H)

类似的 ∂ z ∂ y = − 1 J ∂ ( F , G , H ) ∂ ( y , u , v ) \frac{\partial z}{\partial y}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(y,u,v)} yz=J1(y,u,v)(F,G,H) ∂ u ∂ y = − 1 J ∂ ( F , G , H ) ∂ ( z , y , v ) \frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(z,y,v)} yu=J1(z,y,v)(F,G,H) ∂ v ∂ y = − 1 J ∂ ( F , G , H ) ∂ ( z , u , y ) \frac{\partial v}{\partial y}=-\frac{1}{J}\frac{\partial(F,G,H)}{\partial(z,u,y)} yv=J1(z,u,y)(F,G,H)

F,G
x
u
z
v
y
x
y

(选看) 反函数的偏导数

一元一维函数 y = f ( x ) y=f(x) y=f(x)

反函数为 x = f − 1 ( y ) = ϕ ( y ) x=f^{-1}(y)=\phi(y) x=f1(y)=ϕ(y)
ϕ ′ ( y ) = d x d y = 1 d y d x = 1 f ′ ( x ) = 1 f ′ ( ϕ ( y ) ) \phi'(y)=\frac{dx }{dy}=\frac{1}{\frac{dy}{dx}}=\frac{1}{f'(x)}=\frac{1}{f'(\phi(y))} ϕ(y)=dydx=dxdy1=f(x)1=f(ϕ(y))1

二元二维函数 u ( x , y ) , v ( x , y ) u(x,y), v(x,y) u(x,y),v(x,y)

若在 x 0 , y 0 x_0,y_0 x0,y0 处满足 雅可比行列式 ∂ ( u , v ) ∂ ( x , y ) ≠ 0 \frac{\partial (u,v)}{\partial (x,y)}\neq 0 (x,y)(u,v)=0, 则存在反函数 x = x ( u , v ) , y = y ( u , v ) x=x(u,v), y=y(u,v) x=x(u,v),y=y(u,v),
反函数的雅可比矩阵是原函数雅可比矩阵的逆


F ( x , y , u , v ) = x − x ( u ( x , y ) , v ( x , y ) ) = 0 F(x,y,u,v)=x-x(u(x,y),v(x,y))=0 F(x,y,u,v)=xx(u(x,y),v(x,y))=0
G ( x , y , u , v ) = y − y ( u ( x , y ) , v ( x , y ) ) = 0 G(x,y,u,v)=y-y(u(x,y),v(x,y))=0 G(x,y,u,v)=yy(u(x,y),v(x,y))=0
F = 0 F=0 F=0 G = 0 G=0 G=0 同时对 x x x 求偏导
1 = ∂ x ∂ u ∂ u ∂ x + ∂ x ∂ v ∂ v ∂ x 1= \frac{\partial x}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial x}{\partial v}\frac{\partial v}{\partial x} 1=uxxu+vxxv
0 = ∂ y ∂ u ∂ u ∂ x + ∂ y ∂ v ∂ v ∂ x 0= \frac{\partial y}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial y}{\partial v}\frac{\partial v}{\partial x} 0=uyxu+vyxv
F = 0 F=0 F=0 G = 0 G=0 G=0 同时对 y y y 求偏导
0 = ∂ x ∂ u ∂ u ∂ y + ∂ x ∂ v ∂ v ∂ y 0= \frac{\partial x}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial x}{\partial v}\frac{\partial v}{\partial y} 0=uxyu+vxyv
1 = ∂ y ∂ u ∂ u ∂ y + ∂ y ∂ v ∂ v ∂ y 1= \frac{\partial y}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial y}{\partial v}\frac{\partial v}{\partial y} 1=uyyu+vyyv

J = ∂ ( x , y ) ∂ ( u , v ) J=\frac{\partial (x,y)}{\partial (u,v)} J=(u,v)(x,y)

因此
∂ u ∂ x = 1 J ∂ y ∂ v \frac{\partial u}{\partial x}=\frac{1}{J}\frac{\partial y}{\partial v} xu=J1vy
∂ v ∂ x = − 1 J ∂ y ∂ u \frac{\partial v}{\partial x}=-\frac{1}{J}\frac{\partial y}{\partial u} xv=J1uy
∂ u ∂ y = − 1 J ∂ x ∂ v \frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial x}{\partial v} yu=J1vx
∂ v ∂ y = 1 J ∂ x ∂ u \frac{\partial v}{\partial y}=\frac{1}{J}\frac{\partial x}{\partial u} yv=J1ux

用线性代数矩阵的乘法表示

[ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ] [ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ] = [ 1 0 0 1 ] \left[\begin{matrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{matrix}\right]\left[\begin{matrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{matrix}\right] =\left[\begin{matrix} 1 & 0\\ 0& 1 \end{matrix}\right] [uxuyvxvy][xuxvyuyv]=[1001]

x
u
v
y
x
y

三元三维函数 u = ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) u=(x,y,z), v(x,y,z), w(x,y,z) u=(x,y,z),v(x,y,z),w(x,y,z)

类似地

[ ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ] [ ∂ u ∂ x ∂ u ∂ y ∂ u ∂ z ∂ v ∂ x ∂ v ∂ y ∂ v ∂ z ∂ w ∂ x ∂ w ∂ y ∂ w ∂ z ] = [ 1 0 0 0 1 0 0 0 1 ] \left[\begin{matrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w}\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}\\ \end{matrix}\right]\left[\begin{matrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} &\frac{\partial u}{\partial z}\\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} &\frac{\partial v}{\partial z}\\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} &\frac{\partial w}{\partial z}\\ \end{matrix}\right] =\left[\begin{matrix} 1 & 0& 0\\ 0& 1 &0\\ 0& 0 &1 \end{matrix}\right] uxuyuzvxvyvzwxwywz xuxvxwyuyvywzuzvzw = 100010001

x
u
v
w
y
z
x
y
z

(选看) 参数方程的微分

二维单参数方程 (一元二维)

x = x ( t ) x=x(t) x=x(t), y = y ( t ) y=y(t) y=y(t),
d y d x = d y d t d x d t \frac{d y}{d x}= \frac{\frac{d y}{d t}}{\frac{dx}{dt}} dxdy=dtdxdtdy

三维单参数方程 (一元三维)

x = x ( t ) x=x(t) x=x(t), y = y ( t ) y=y(t) y=y(t), z = z ( t ) z=z(t) z=z(t)
d y d x = d y d t d x d t \frac{d y}{d x}= \frac{\frac{d y}{d t}}{\frac{dx}{dt}} dxdy=dtdxdtdy
d z d x = d z d t d x d t \frac{d z}{d x}= \frac{\frac{d z}{d t}}{\frac{dx}{dt}} dxdz=dtdxdtdz
d z d y = d z d t d y d t \frac{d z}{d y}= \frac{\frac{d z}{d t}}{\frac{dy}{dt}} dydz=dtdydtdz

三维双参数方程 (二元三维)

x = x ( s , t ) x=x(s,t) x=x(s,t), y = y ( s , t ) y=y(s,t) y=y(s,t), z = z ( s , t ) z=z(s,t) z=z(s,t), 求解 ∂ z ∂ x \frac{\partial z}{\partial x} xz, ∂ z ∂ y \frac{\partial z}{\partial y} yz

推出隐函数 s = s ( x , y ) s=s(x,y) s=s(x,y), t = t ( x , y ) t=t(x,y) t=t(x,y)

z = z ( s , t ) = z ( s ( x , y ) , t ( x , y ) ) z=z(s,t)=z(s(x,y), t(x,y)) z=z(s,t)=z(s(x,y),t(x,y)),

∂ z ∂ x = ∂ z ∂ s ∂ s ∂ x + ∂ z ∂ t ∂ t ∂ x \frac{\partial z}{\partial x}= \frac{\partial z}{\partial s}\frac{\partial s}{\partial x}+ \frac{\partial z}{\partial t}\frac{\partial t}{\partial x} xz=szxs+tzxt

∂ z ∂ y = ∂ z ∂ s ∂ s ∂ y + ∂ z ∂ t ∂ t ∂ y \frac{\partial z}{\partial y}= \frac{\partial z}{\partial s}\frac{\partial s}{\partial y}+\frac{\partial z}{\partial t}\frac{\partial t}{\partial y} yz=szys+tzyt

结合二元二维反函数

J = ∂ ( x , y ) ∂ ( s , t ) J=\frac{\partial (x,y)}{\partial (s,t)} J=(s,t)(x,y)

∂ s ∂ x = 1 J ∂ y ∂ t \frac{\partial s}{\partial x}=\frac{1}{J}\frac{\partial y}{\partial t} xs=J1ty
∂ t ∂ x = − 1 J ∂ y ∂ s \frac{\partial t}{\partial x}=-\frac{1}{J}\frac{\partial y}{\partial s} xt=J1sy
∂ s ∂ y = − 1 J ∂ x ∂ t \frac{\partial s}{\partial y}=-\frac{1}{J}\frac{\partial x}{\partial t} ys=J1tx
∂ t ∂ y = 1 J ∂ x ∂ s \frac{\partial t}{\partial y}=\frac{1}{J}\frac{\partial x}{\partial s} yt=J1sx

∂ z ∂ x = 1 J ∂ ( z , x ) ∂ ( s , t ) \frac{\partial z}{\partial x} = \frac{1}{J} \frac{\partial (z,x)}{\partial (s,t)} xz=J1(s,t)(z,x)
∂ z ∂ y = 1 J ∂ ( x , z ) ∂ ( s , t ) \frac{\partial z}{\partial y} = \frac{1}{J} \frac{\partial (x,z)}{\partial (s,t)} yz=J1(s,t)(x,z)

z
s
t
x
y
x
y

原文地址:https://blog.csdn.net/serpenttom/article/details/142992026

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!