Hadoop中MapReduce过程中Shuffle过程实现自定义排序
文章目录
Hadoop中MapReduce过程中Shuffle过程实现自定义排序
一、引言
MapReduce框架中的Shuffle过程是连接Map阶段和Reduce阶段的桥梁,负责将Map任务的输出结果按照key进行分组和排序,并将相同key的数据传递给对应的Reduce任务进行处理。Shuffle过程的性能直接影响到整个MapReduce作业的执行效率。在默认情况下,Hadoop使用TotalOrderPartitioner
进行排序,但有时我们需要根据特定的业务逻辑进行自定义排序。本文将介绍两种方法来实现自定义排序:实现WritableComparable
接口和使用Job.setSortComparatorClass
方法。下面是详细的步骤和代码示例。
二、实现WritableComparable接口
1、自定义Key类
首先,我们需要定义一个类并实现WritableComparable
接口,该接口要求实现compareTo
方法,用于定义排序逻辑。
package mr;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class Employee implements WritableComparable<Employee> {
private int empno;
private String ename;
private String job;
private int mgr;
private String hiredate;
private int sal;
private int comm;
private int deptno;
@Override
public String toString(){
return "Employee[empno="+empno+",ename="+ename+",sal="+sal+",deptno="+deptno+"]";
}
@Override
public int compareTo(Employee o) {
// 多个列的排序:select * from emp order by deptno,sal;
// 首先按照deptno排序
if(this.deptno > o.getDeptno()){
return 1;
}else if(this.deptno < o.getDeptno()){
return -1;
}
// 如果deptno相等,按照sal排序
if(this.sal >= o.getSal()){
return 1;
}else{
return -1;
}
}
@Override
public void write(DataOutput output) throws IOException {
// 序列化
output.writeInt(this.empno);
output.writeUTF(this.ename);
output.writeUTF(this.job);
output.writeInt(this.mgr);
output.writeUTF(this.hiredate);
output.writeInt(this.sal);
output.writeInt(this.comm);
output.writeInt(this.deptno);
}
@Override
public void readFields(DataInput input) throws IOException {
// 反序列化
this.empno = input.readInt();
this.ename = input.readUTF();
this.job = input.readUTF();
this.mgr = input.readInt();
this.hiredate = input.readUTF();
this.sal = input.readInt();
this.comm = input.readInt();
this.deptno = input.readInt();
}
}
三、使用Job.setSortComparatorClass方法
2、设置自定义排序器
除了实现WritableComparable
接口外,我们还可以使用Job.setSortComparatorClass
方法来设置自定义排序器。这种方法允许我们在不修改Key类的情况下实现自定义排序。
package mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class CustomSort {
public static class Map extends Mapper<Object, Text, Employee, IntWritable> {
private static Employee emp = new Employee();
private static IntWritable one = new IntWritable(1);
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String[] line = value.toString().split("\t");
emp.setEmpno(Integer.parseInt(line[0]));
emp.setEname(line[1]);
emp.setJob(line[2]);
emp.setMgr(Integer.parseInt(line[3]));
emp.setHiredate(line[4]);
emp.setSal(Integer.parseInt(line[5]));
emp.setComm(Integer.parseInt(line[6]));
emp.setDeptno(Integer.parseInt(line[7]));
context.write(emp, one);
}
}
public static class Reduce extends Reducer<Employee, IntWritable, Employee, IntWritable> {
@Override
protected void reduce(Employee key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
for (IntWritable val : values) {
context.write(key, val);
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "CustomSort");
job.setJarByClass(CustomSort.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Employee.class);
job.setOutputValueClass(IntWritable.class);
// 设置自定义排序器
job.setSortComparatorClass(EmployeeComparator.class);
Path in = new Path("hdfs://localhost:9000/mr/in/customsort");
Path out = new Path("hdfs://localhost:9000/mr/out/customsort");
FileInputFormat.addInputPath(job, in);
FileOutputFormat.setOutputPath(job, out);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
3、自定义排序器类
package mr;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
public class EmployeeComparator extends WritableComparator {
protected EmployeeComparator() {
super(Employee.class, true);
}
@Override
public int compare(WritableComparable w1, WritableComparable w2) {
Employee e1 = (Employee) w1;
Employee e2 = (Employee) w2;
// 首先按照deptno排序
int deptCompare = Integer.compare(e1.getDeptno(), e2.getDeptno());
if (deptCompare != 0) {
return deptCompare;
}
// 如果deptno相等,按照sal排序
return Integer.compare(e1.getSal(), e2.getSal());
}
}
四、使用示例
下面是一个简单的MapReduce示例,展示了Shuffle过程在实际应用中的使用。这个示例中,我们使用了自定义的Employee
类作为Key,并设置了自定义的排序器EmployeeComparator
。
五、总结
通过实现WritableComparable
接口和使用Job.setSortComparatorClass
方法,我们可以在Hadoop MapReduce过程中实现自定义排序。这两种方法提供了灵活的排序机制,允许我们根据不同的业务需求对数据进行排序处理,从而提高数据处理的效率和准确性。
版权声明:本博客内容为原创,转载请保留原文链接及作者信息。
参考文章:
原文地址:https://blog.csdn.net/NiNg_1_234/article/details/144701435
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!