矩阵的对角化&特征值分解
矩阵对角化和特征值分解实际上描述的是同一个过程的不同方面。矩阵对角化 强调的是通过相似变换将矩阵 A A A转化为对角矩阵 D D D。特征值分解 强调的是如何通过矩阵的特征值和特征向量来实现这种对角化。
矩阵对角化
矩阵对角化是指将一个方阵 A A A通过相似变换转化为一个对角矩阵 D D D的过程。具体来说,如果存在一个可逆矩阵 P P P和一个对角矩阵 D D D,使得:
P − 1 A P = D P^{-1}AP = D P−1AP=D
或者等价地,
A = P D P − 1 A = PDP^{-1} A=PDP−1
这里:
- P P P是一个由 A A A的特征向量组成的矩阵。
- D D D是一个对角矩阵,其对角线上的元素是 A A A的特征值。
特征值分解
特征值与特征向量
对于一个 n × n n \times n n×n的方阵 A A A,如果存在一个标量 λ \lambda λ和一个非零向量 v v v,使得:
A v = λ v A v = \lambda v Av=λv
那么 λ \lambda λ称为 A A A的一个特征值,而 v v v称为对应的特征向量。特征值和特征向量揭示了矩阵 A A A在某些方向上的线性变换特性。
特征值分解
特征值分解(Eigenvalue Decomposition)是矩阵对角化的一种特殊形式。它强调的是将矩阵 A A A分解为其特征值和特征向量的过程。具体来说,特征值分解可以表示为:
A = P D P − 1 A = PDP^{-1} A=PDP−1
其中:
- P P P是特征向量矩阵,其列向量是 A A A的特征向量。
- D D D是对角矩阵,其对角线上的元素是 A A A的特征值。
需要注意的是,并不是所有的矩阵都能被对角化。一个矩阵能被对角化的充分必要条件是它有 n n n个线性独立的特征向量。如果一个矩阵没有足够的线性独立的特征向量,那么它不能被对角化,但可以通过其他方法(如 Jordan 标准形)进行近似对角化。
例子
假设有一个 2 × 2 2 \times 2 2×2的矩阵 A A A:
A = ( 4 1 2 3 ) A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} A=(4213)
我们可以通过求解特征值和特征向量来对其进行对角化或特征值分解。
-
求特征值:
解特征多项式 det ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(A−λI)=0:
det ( 4 − λ 1 2 3 − λ ) = ( 4 − λ ) ( 3 − λ ) − 2 = λ 2 − 7 λ + 10 = 0 \det \begin{pmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{pmatrix} = (4 - \lambda)(3 - \lambda) - 2 = \lambda^2 - 7\lambda + 10 = 0 det(4−λ213−λ)=(4−λ)(3−λ)−2=λ2−7λ+10=0
解得特征值 λ 1 = 2 \lambda_1 = 2 λ1=2和 λ 2 = 5 \lambda_2 = 5 λ2=5。 -
求特征向量:
-
对于 λ 1 = 2 \lambda_1 = 2 λ1=2:
( A − 2 I ) v 1 = 0 ⟹ ( 2 1 2 1 ) ( x y ) = 0 (A - 2I)v_1 = 0 \implies \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 (A−2I)v1=0⟹(2211)(xy)=0
解得特征向量 v 1 = ( 1 − 2 ) v_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} v1=(1−2)。 -
对于 λ 2 = 5 \lambda_2 = 5 λ2=5:
( A − 5 I ) v 2 = 0 ⟹ ( − 1 1 2 − 2 ) ( x y ) = 0 (A - 5I)v_2 = 0 \implies \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 (A−5I)v2=0⟹(−121−2)(xy)=0
解得特征向量 v 2 = ( 1 1 ) v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v2=(11)。
-
-
构造矩阵 P P P和 D D D:
P = ( 1 1 − 2 1 ) , D = ( 2 0 0 5 ) P = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} P=(1−211),D=(2005) -
验证:
P − 1 = 1 3 ( 1 − 1 2 1 ) P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} P−1=31(12−11)
P − 1 A P = 1 3 ( 1 − 1 2 1 ) ( 4 1 2 3 ) ( 1 1 − 2 1 ) = ( 2 0 0 5 ) = D P^{-1}AP = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix} = D P−1AP=31(12−11)(4213)(1−211)=(2005)=D
原文地址:https://blog.csdn.net/u013600306/article/details/143765471
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!