自学内容网 自学内容网

【数学分析笔记】第4章第2节 导数的意义和性质(1)

4. 微分

4.2 导数的意义与性质

4.2.1 导数在物理中的背景


物体在OS方向上运动,位移函数为 s = s ( t ) s=s(t) s=s(t),求时刻 t t t的瞬时速度,找一个区间 [ t , t + △ t ] [t,t+\bigtriangleup t] [t,t+t],从时刻 t t t变到时刻 t + △ t t+\bigtriangleup t t+t,则 △ s = s ( t + △ t ) − s ( t ) \bigtriangleup s=s(t+\bigtriangleup t)-s(t) s=s(t+t)s(t) △ s △ t \frac{\bigtriangleup s}{\bigtriangleup t} ts是这段时间的平均速度,而这段时间的瞬时速度为 v ( t ) = lim ⁡ △ t → 0 △ s △ t = lim ⁡ △ t → 0 s ( t + △ t ) − s ( t ) △ t = s ′ ( t ) v(t)=\lim\limits_{\bigtriangleup t\to 0}\frac{\bigtriangleup s}{\bigtriangleup t}=\lim\limits_{\bigtriangleup t\to 0}\frac{s(t+\bigtriangleup t)-s(t)}{\bigtriangleup t}=s'(t) v(t)=t0limts=t0limts(t+△t)s(t)=s(t)


再看一个例子,设 p ( t ) p(t) p(t)表示某地区在 t t t时刻的人口数,要算某一时段的人口增长率,在 [ t , t + △ t ] [t,t+\bigtriangleup t] [t,t+t]这段时间, △ p = p ( t + △ t ) − p ( t ) \bigtriangleup p=p(t+\bigtriangleup t)-p(t) p=p(t+t)p(t),则 △ p △ t \frac{\bigtriangleup p}{\bigtriangleup t} tp是这段时间人口平均增长率,人口在该时刻 t t t的增长率为 lim ⁡ △ t → 0 △ p △ t = lim ⁡ △ t → 0 p ( t + △ t ) − p ( t ) △ t = p ′ ( t ) \lim\limits_{\bigtriangleup t\to 0}\frac{\bigtriangleup p}{\bigtriangleup t}=\lim\limits_{\bigtriangleup t\to 0}\frac{p(t+\bigtriangleup t)-p(t)}{\bigtriangleup t}=p'(t) t0limtp=t0limtp(t+△t)p(t)=p(t)

4.2.2 导数的几何意义

画一条曲线,求曲线上一点的切线的斜率

切线看成是割线的极限位置

△ x → 0 \bigtriangleup x\to 0 x0,则割线的斜率为 △ y △ x \frac{\bigtriangleup y}{\bigtriangleup x} xy,记切线斜率为 k k k,记函数为 y = f ( x ) y=f(x) y=f(x),切线斜率为 k = lim ⁡ △ x → 0 △ y △ x = lim ⁡ △ x → 0 f ( x + △ x ) − f ( x ) △ x = f ′ ( x ) k=\lim\limits_{\bigtriangleup x\to 0}\frac{\bigtriangleup y}{\bigtriangleup x}=\lim\limits_{\bigtriangleup x\to 0}\frac{f(x+\bigtriangleup x)-f(x)}{\bigtriangleup x}=f'(x) k=x0limxy=x0limxf(x+△x)f(x)=f(x)
( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))的切线: y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=f'(x_0)(x-x_0) yf(x0)=f(x0)(xx0),法线方程为 y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y-f(x_0)=-\frac{1}{f'(x_0)}(x-x_0),f'(x_0)\ne 0 yf(x0)=f(x0)1(xx0),f(x0)=0


【例4.2.1】求抛物线 y 2 = 2 p x , p > 0 y^2=2px,p>0 y2=2px,p>0 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)是抛物线上切线一点,求过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的切线方程。
【解】

y = 2 p x y=\sqrt{2px} y=2px
k = lim ⁡ △ x → 0 2 p ( x + △ x ) − 2 p x △ x = lim ⁡ △ x → 0 ( 2 p ( x + △ x ) − 2 p x ) ( 2 p ( x + △ x ) + 2 p x ) △ x ( 2 p ( x + △ x ) + 2 p x ) = lim ⁡ △ x → 0 2 p △ x △ x ( 2 p ( x + △ x ) + 2 p x ) = lim ⁡ △ x → 0 2 p 2 p ( x + △ x ) + 2 p x = 2 p 2 2 p x = p 2 x k=\lim\limits_{\bigtriangleup x\to 0}\frac{\sqrt{2p(x+\bigtriangleup x)}-\sqrt{2px}}{\bigtriangleup x}=\lim\limits_{\bigtriangleup x\to 0}\frac{(\sqrt{2p(x+\bigtriangleup x)}-\sqrt{2px})(\sqrt{2p(x+\bigtriangleup x)}+\sqrt{2px})}{\bigtriangleup x(\sqrt{2p(x+\bigtriangleup x)}+\sqrt{2px})}=\lim\limits_{\bigtriangleup x\to 0}\frac{2p\bigtriangleup x}{\bigtriangleup x(\sqrt{2p(x+\bigtriangleup x)}+\sqrt{2px})}=\lim\limits_{\bigtriangleup x\to 0}\frac{2p}{\sqrt{2p(x+\bigtriangleup x)}+\sqrt{2px}}=\frac{2p}{2\sqrt{2px}}=\sqrt{\frac{p}{2x}} k=x0limx2p(x+△x) 2px =x0limx(2p(x+△x) +2px )(2p(x+△x) 2px )(2p(x+△x) +2px )=x0limx(2p(x+△x) +2px )2px=x0lim2p(x+△x) +2px 2p=22px 2p=2xp
切线方程为 y − y 0 = p 2 x 0 ( x − x 0 ) y-y_0=\sqrt{\frac{p}{2x_0}}(x-x_0) yy0=2x0p (xx0)
【注】由抛物线的切线方程得到抛物线的重要性质:

tan ⁡ θ 1 = p 2 x 0 = p y 0 \tan \theta_{1}=\frac{\sqrt{p}}{\sqrt{2 x_{0}}}=\frac{p}{y_{0}} tanθ1=2x0 p =y0p,记 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)与抛物线焦点 ( p 2 , 0 ) (\frac{p}{2},0) (2p,0)连线与 x x x轴的夹角为 θ 2 \theta_{2} θ2,该连线与抛物线在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的切线的夹角为 θ \theta θ,则有:

tan ⁡ θ 2 = y 0 x 0 − p 2 \tan \theta_{2}=\frac{y_{0}}{x_{0}-\frac{p}{2}} tanθ2=x02py0
于是 tan ⁡ θ = tan ⁡ ( θ 2 − θ 1 ) = tan ⁡ θ 2 − tan ⁡ θ 1 1 + tan ⁡ θ 2 ⋅ tan ⁡ θ 1 = y 0 x 0 − p 2 − p y 0 1 + y 0 x 0 − p 2 ⋅ p y 0 = p y 0 = tan ⁡ θ 1 \tan \theta=\tan (\theta_{2} - \theta_{1})=\frac{\tan \theta_{2}-\tan \theta_{1}}{1+\tan \theta_{2} \cdot \tan \theta_{1}}=\frac{\frac{y_{0}}{x_{0}-\frac{p}{2}}-\frac{p}{y_{0}}}{1+\frac{y_{0}}{x_{0}-\frac{p}{2}} \cdot \frac{p}{y_{0}}}=\frac{p}{y_{0}}=\tan \theta_{1} tanθ=tan(θ2θ1)=1+tanθ2tanθ1tanθ2tanθ1=1+x02py0y0px02py0y0p=y0p=tanθ1 y 0 2 = 2 p x 0 y_{0}^{2}=2px_{0} y02=2px0代入化简计算)
即恰好 θ \theta θ与切线与 x x x轴夹角 θ 1 \theta_{1} θ1相等。

【例4.2.2】 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1,求椭圆上过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)点的切线。
【解】不妨设 y 0 > 0 y_0>0 y0>0 y = b a a 2 − x 2 y=\frac{b}{a}\sqrt{a^2-x^2} y=aba2x2
k = b a lim ⁡ Δ x → 0 a 2 − ( x 0 + Δ x ) 2 − a 2 − x 0 2 Δ x = b a lim ⁡ Δ x → 0 x 0 2 − ( x 0 + Δ x ) 2 ( a 2 − ( x 0 + Δ x ) 2 + a 2 − x 0 2 ) ⋅ Δ x = b a − x 0 a 2 − x 0 2 k=\frac{b}{a} \lim\limits_{\Delta x \rightarrow 0} \frac{\sqrt{a^{2}-\left(x_{0}+\Delta x\right)^{2}}-\sqrt{a^{2}-x_{0}^{2}}}{\Delta x}=\frac{b}{a} \lim\limits_{\Delta x \rightarrow 0} \frac{x_{0}^{2}-\left(x_{0}+\Delta x\right)^{2}}{\left(\sqrt{a^{2}-\left(x_{0}+\Delta x\right)^{2}}+\sqrt{a^{2}-x_{0}^{2}}\right) \cdot \Delta x}=\frac{b}{a} \frac{-x_{0}}{\sqrt{a^{2}-x_{0}^{2}}} k=abΔx0limΔxa2(x0+Δx)2 a2x02 =abΔx0lim(a2(x0+Δx)2 +a2x02 )Δxx02(x0+Δx)2=aba2x02 x0
所以切线方程为 y − y 0 = b a − x 0 a 2 − x 0 2 ( x − x 0 ) = − b 2 a 2 ⋅ x 0 b a a 2 − x 0 2 y-y_{0}=\frac{b}{a} \frac{-x_{0}}{\sqrt{a^{2}-x_{0}^{2}}}\left(x-x_{0}\right)=-\frac{b^2}{a^2}\cdot\frac{x_0}{\frac{b}{a}\sqrt{a^2-x_{0}^{2}}} yy0=aba2x02 x0(xx0)=a2b2aba2x02 x0
a 2 y 0 y + b 2 x 0 x = a 2 y 0 2 + b 2 x 0 2 = a 2 b 2 a^2y_0y+b^2x_0x=a^2y_0^2+b^2x_0^2=a^2b^2 a2y0y+b2x0x=a2y02+b2x02=a2b2
y 0 y a + x 0 x b = 1 \frac{y_0y}{a}+\frac{x_0x}{b}=1 ay0y+bx0x=1


原文地址:https://blog.csdn.net/qq_30204431/article/details/142649532

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!