使用C# 实现期望最大化算法
期望最大化算法(Expectation-Maximization Algorithm,简称EM算法)是一种迭代优化算法,主要用于估计含有隐变量(latent variables)的概率模型参数。它在机器学习和统计学中有着广泛的应用,包括但不限于高斯混合模型(Gaussian Mixture Model, GMM)、隐马尔可夫模型(Hidden Markov Model, HMM)以及各种聚类和分类问题。
算法由两步组成:E-step(期望步骤)和M-step(最大化步骤)。
首先,我们需要定义一些必要的数学函数和类。这里是一个简化版的EM算法实现,用于估计高斯混合模型的参数:
using System;
using System.Linq;
public class GaussianMixtureModel
{
private double[][] data;
private double[] weights;
private double[] means;
private double[] variances;
public GaussianMixtureModel(double[][] data, int numComponents)
{
this.data = data;
weights = Enumerable.Repeat(1.0 / numComponents, numComponents).ToArray();
means = new double[numComponents];
variances = new double[numComponents];
// Initialize means and variances randomly.
Random random = new Random();
for (int i = 0; i < numComponents; i++)
{
means[i] = random.NextDouble() * 10;
variances[i] = random.NextDouble() * 10 + 1;
}
}
private double GaussianPdf(double x, double mean, double variance)
{
double exponent = Math.Exp(-Math.Pow(x - mean, 2) / (2 * variance));
return (1 / Math.Sqrt(2 * Math.PI * variance)) * exponent;
}
public void ExpectationMaximization(int maxIterations)
{
for (int iteration = 0; iteration < maxIterations; iteration++)
{
// E-step
double[,] responsibilities = new double[data.Length, weights.Length];
for (int i = 0; i < data.Length; i++)
{
double denominator = 0;
for (int k = 0; k < weights.Length; k++)
{
responsibilities[i, k] = weights[k] * GaussianPdf(data[i][0], means[k], variances[k]);
denominator += responsibilities[i, k];
}
for (int k = 0; k < weights.Length; k++)
{
responsibilities[i, k] /= denominator;
}
}
// M-step
for (int k = 0; k < weights.Length; k++)
{
double weightDenominator = 0;
double meanNumerator = 0;
for (int i = 0; i < data.Length; i++)
{
weightDenominator += responsibilities[i, k];
meanNumerator += responsibilities[i, k] * data[i][0];
}
means[k] = meanNumerator / weightDenominator;
variances[k] = data.Sum(i => responsibilities[i, k] * Math.Pow(data[i][0] - means[k], 2)) / weightDenominator;
weights[k] = weightDenominator / data.Length;
}
}
}
}
这个类GaussianMixtureModel
初始化了一个具有指定数量组件的高斯混合模型,并通过ExpectationMaximization
方法执行了EM算法。
原文地址:https://blog.csdn.net/u013528853/article/details/140351308
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!