【隐私计算篇】利用多方安全计算MPC实现VGG16人脸识别隐私计算模型
1. 背景介绍
本文主要介绍一种利用多方安全计算MPC技术,实现VGG16的人脸识别模型,侧重于模型推理阶段,此工作是多年前完成的,目前已经公开专利,其中涉及到最小化多方安全计算(MPC)以及明密文混合计算的思想,仅供参考。
人脸识别是一种基于生物特征识别技术的身份验证和识别方法,在多种场景中广泛应用,比如安防、银行、终端设备等,更贴近生活的还有支付宝的扫脸支付。人脸识别在各领域的广泛应用带来了便利,但也引发了隐私和数据安全方面的讨论以及担忧,传统的人脸识别系统在数据采集、存储和处理过程中很可能会存在隐私泄露的风险。
比如传统人脸识别系统通常需要将用户的面部数据上传到中央服务器进行处理,如果这些数据被黑客入侵、内部人员滥用或系统漏洞利用,可能会导致用户敏感信息泄露。此外,某些公司或机构可能会将收集到的人脸数据用于未经用户同意的商业或其他用途,侵犯个人隐私。
鉴于上述原因,很有必要采用隐私保护技术。隐私计算技术(如联邦学习、差分隐私、多方安全计算等)允许在不直接共享原始数据的前提下进行人脸识别模型的训练和推理,从而防止数据滥用和泄露。实现隐私计算的人脸识别是为了在保证人脸识别技术有效性的同时,最大程度地保护用户的个人隐私。
2. 算法介绍
本文主要介绍利用安全多方计算(MPC)实现VGG16人脸识别模型的推理预测。在介绍具体算法之前,需要对MPC有一定的了解,有助于理解后续的深度学习算法隐私计算化改造。安全多方计算(MPC)是一种密码学技术,它允许多个参与方在不泄露各自私有数据的前提下,协同计算一个共同的函数结果。关于MPC的介绍,这里不做详细展开,有兴趣的话可以看下冯登国院士关于MPC的基础知识分享,包括 基于秘密分享方法的MPC以及基于混淆电路方法的MPC,另外关于混淆电路的知识也可以参考我们之前的文章《混淆电路深入浅出》,涉及的密码原语不经意传输可以参考我们的系列文章《OT&OT扩展(不经意传输扩展)深入浅出》、《不经意传输协议(OT/OTE)的进一步补充》。
2.1 具体算法介绍
2.1.1 人脸分布式存储
由于时间关系,后续内容将在明天补充。。。
原文地址:https://blog.csdn.net/weixin_65514978/article/details/142366392
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!