自学内容网 自学内容网

YOLOv9改进策略【损失函数篇】| 2024 引进Focaler-IoU损失函数 加强边界框回归

一、本文介绍

本文记录的是改进YOLOv9的损失函数,将其替换成Focaler-IoU。现有研究通过利用边界框之间的几何关系来提高回归性能,但忽略了困难样本和简单样本分布对边界框回归的影响。不同检测任务中困难样本和简单样本的分布不同,对于简单样本占主导的检测任务,关注简单样本的边界框回归有助于提高检测性能;对于困难样本比例较高的检测任务,需要关注困难样本的边界框回归。Focaler-IoU能够通过关注不同的回归样本,提高检测器在不同检测任务中的性能。

实现的Focaler-IoU包括:Focaler-DIoUFocaler-GIoUFocaler-CIoUFocaler-MDPIoU


专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进方向

专栏地址:YOLOv9改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!


原文地址:https://blog.csdn.net/qq_42591591/article/details/142330433

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!