LoFTR关键点特征匹配算法环境构建与图像匹配测试Demo
0,LoFTR
CVPR 2021论文《LoFTR: Detector-Free Local Feature Matching with Transformers》开源代码
1,项目主页
LoFTR: Detector-Free Local Feature Matching with Transformers
2,GItHub主页
3,配置环境
一键运行:
conda env create -f environment.yaml
'environment.yaml'中内容如下,所以时间会比较久:
name: loftr
channels:
# - https://dx-mirrors.sensetime.com/anaconda/cloud/pytorch
- pytorch
- conda-forge
- defaults
dependencies:
- python=3.8
- cudatoolkit=10.2
- pytorch=1.8.1
- pip
- pip:
- -r requirements.txt
4,下载模型
作者提供了数据下载链接,其中weights文件夹里是模型文件:
https://drive.google.com/drive/folders/1DOcOPZb3-5cWxLqn256AhwUVjBPifhuf?usp=sharing
模型文件下载后,将weights文件夹放在LoFTR目录中
5,设置数据
在LoFTR/demo文件夹下创建两个文件夹,命名为images和output
其中images需要放入进行特征匹配的照片
output用来存放输出结果
图片文件随便两张带有重叠景象的图片
6,测试demo
由于我测试的是室内拍摄的照片,所以使用的是indoor权重,程序如下:
import torch
import cv2
import numpy as np
import matplotlib.cm as cm
import os
from src.utils.plotting import make_matching_figure
from src.loftr import LoFTR, default_cfg
if __name__ == '__main__':
# 根据图片拍摄场景和下载的预训练模型进行选择 可选:indoor(室内)、outdoor(室外)
image_type = 'indoor'
# 根据个人图片路径进行修改
img0_pth = "demo/images/mouse (1).jpg"
img1_pth = "demo/images/mouse (2).jpg"
# img0_pth = "demo/images/1.png"
# img1_pth = "demo/images/2.png"
image_pair = [img0_pth, img1_pth]
# 默认配置使用dual-softmax最大值。
# 室外和室内模型使用相同的配置。
# 你可以更改默认值,比如阈值和粗匹配类型。
matcher = LoFTR(config=default_cfg)
# 加载预训练模型
if image_type == 'indoor':
matcher.load_state_dict(torch.load("weights/indoor_ds.ckpt")['state_dict'])
elif image_type == 'outdoor':
matcher.load_state_dict(torch.load("weights/outdoor_ds.ckpt")['state_dict'])
else:
raise ValueError("给定的 image_type 错误。")
matcher = matcher.eval().cuda()
# 如果上传了新的图片对,重新运行此单元格(及以下单元格)。
img0_raw = cv2.imread(image_pair[0], cv2.IMREAD_GRAYSCALE)
img1_raw = cv2.imread(image_pair[1], cv2.IMREAD_GRAYSCALE)
# 检查图像是否成功读取
if img0_raw is None:
raise FileNotFoundError(f"无法找到或读取路径 {image_pair[0]} 下的图像。")
if img1_raw is None:
raise FileNotFoundError(f"无法找到或读取路径 {image_pair[1]} 下的图像。")
img0_raw = cv2.resize(img0_raw, (640, 480))
img1_raw = cv2.resize(img1_raw, (640, 480))
img0 = torch.from_numpy(img0_raw)[None][None].cuda() / 255.
img1 = torch.from_numpy(img1_raw)[None][None].cuda() / 255.
batch = {'image0': img0, 'image1': img1}
# 使用 LoFTR 进行推理并获得预测
with torch.no_grad():
matcher(batch)
mkpts0 = batch['mkpts0_f'].cpu().numpy()
mkpts1 = batch['mkpts1_f'].cpu().numpy()
mconf = batch['mconf'].cpu().numpy()
# 绘图
color = cm.jet(mconf, alpha=0.7)
text = [
'LoFTR',
'Matches: {}'.format(len(mkpts0)),
]
fig = make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, mkpts0, mkpts1, text)
# 也会自动下载高分辨率的PDF。
make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, mkpts0, mkpts1, text, path="demo/output/LoFTR-colab-demo.pdf")
7,运行结果
运行上面的程序,在demo/output文件夹中能找到PDF文件LoFTR-colab-demo.pdf
原文地址:https://blog.csdn.net/weixin_45498383/article/details/140602479
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!