自学内容网 自学内容网

【unity进阶知识9】序列化字典,场景,vector,color,Quaternion

前言

自定义序列化的主要原因:

  1. 可读性:使数据结构更清晰,便于理解和维护。
  2. 优化 Inspector:提供更友好的用户界面,方便编辑和查看数据。
  3. 控制序列化:实现特定的序列化逻辑,灵活处理数据。比如在保存或加载时进行特定的转换或处理。
  4. 性能提升:减少内存占用,提高序列化和反序列化的效率。
  5. 易于扩展:根据项目需求灵活添加字段和功能。
  6. 类型安全:确保使用正确的数据类型,减少错误。

一、可序列化字典类

Unity 无法序列化标准词典。这意味着它们不会在检查器中显示或编辑,
也不会在启动时实例化。一个经典的解决方法是将键和值存储在单独的数组中,并在启动时构造字典。

我们使用gitthub大佬的源码即可,此项目提供了一个通用字典类及其自定义属性抽屉来解决此问题。
源码地址:https://github.com/azixMcAze/Unity-SerializableDictionary

你可以选择下载源码,也可以直接复制我下面的代码,我把主要代码提出来了
SerializableDictionary.cs

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization;
using UnityEngine;

public abstract class SerializableDictionaryBase
{
public abstract class Storage {}

protected class Dictionary<TKey, TValue> : System.Collections.Generic.Dictionary<TKey, TValue>
{
public Dictionary() {}
public Dictionary(IDictionary<TKey, TValue> dict) : base(dict) {}
public Dictionary(SerializationInfo info, StreamingContext context) : base(info, context) {}
}
}

[Serializable]
public abstract class SerializableDictionaryBase<TKey, TValue, TValueStorage> : SerializableDictionaryBase, IDictionary<TKey, TValue>, IDictionary, ISerializationCallbackReceiver, IDeserializationCallback, ISerializable
{
Dictionary<TKey, TValue> m_dict;
[SerializeField]
TKey[] m_keys;
[SerializeField]
TValueStorage[] m_values;

public SerializableDictionaryBase()
{
m_dict = new Dictionary<TKey, TValue>();
}

public SerializableDictionaryBase(IDictionary<TKey, TValue> dict)
{
m_dict = new Dictionary<TKey, TValue>(dict);
}

protected abstract void SetValue(TValueStorage[] storage, int i, TValue value);
protected abstract TValue GetValue(TValueStorage[] storage, int i);

public void CopyFrom(IDictionary<TKey, TValue> dict)
{
m_dict.Clear();
foreach (var kvp in dict)
{
m_dict[kvp.Key] = kvp.Value;
}
}

public void OnAfterDeserialize()
{
if(m_keys != null && m_values != null && m_keys.Length == m_values.Length)
{
m_dict.Clear();
int n = m_keys.Length;
for(int i = 0; i < n; ++i)
{
m_dict[m_keys[i]] = GetValue(m_values, i);
}

m_keys = null;
m_values = null;
}
}

public void OnBeforeSerialize()
{
int n = m_dict.Count;
m_keys = new TKey[n];
m_values = new TValueStorage[n];

int i = 0;
foreach(var kvp in m_dict)
{
m_keys[i] = kvp.Key;
SetValue(m_values, i, kvp.Value);
++i;
}
}

#region IDictionary<TKey, TValue>

public ICollection<TKey> Keys {get { return ((IDictionary<TKey, TValue>)m_dict).Keys; } }
public ICollection<TValue> Values { get { return ((IDictionary<TKey, TValue>)m_dict).Values; } }
public int Count { get { return ((IDictionary<TKey, TValue>)m_dict).Count; } }
public bool IsReadOnly { get { return ((IDictionary<TKey, TValue>)m_dict).IsReadOnly; } }

public TValue this[TKey key]
{
get { return ((IDictionary<TKey, TValue>)m_dict)[key]; }
set { ((IDictionary<TKey, TValue>)m_dict)[key] = value; }
}

public void Add(TKey key, TValue value)
{
((IDictionary<TKey, TValue>)m_dict).Add(key, value);
}

public bool ContainsKey(TKey key)
{
return ((IDictionary<TKey, TValue>)m_dict).ContainsKey(key);
}

public bool Remove(TKey key)
{
return ((IDictionary<TKey, TValue>)m_dict).Remove(key);
}

public bool TryGetValue(TKey key, out TValue value)
{
return ((IDictionary<TKey, TValue>)m_dict).TryGetValue(key, out value);
}

public void Add(KeyValuePair<TKey, TValue> item)
{
((IDictionary<TKey, TValue>)m_dict).Add(item);
}

public void Clear()
{
((IDictionary<TKey, TValue>)m_dict).Clear();
}

public bool Contains(KeyValuePair<TKey, TValue> item)
{
return ((IDictionary<TKey, TValue>)m_dict).Contains(item);
}

public void CopyTo(KeyValuePair<TKey, TValue>[] array, int arrayIndex)
{
((IDictionary<TKey, TValue>)m_dict).CopyTo(array, arrayIndex);
}

public bool Remove(KeyValuePair<TKey, TValue> item)
{
return ((IDictionary<TKey, TValue>)m_dict).Remove(item);
}

public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
{
return ((IDictionary<TKey, TValue>)m_dict).GetEnumerator();
}

IEnumerator IEnumerable.GetEnumerator()
{
return ((IDictionary<TKey, TValue>)m_dict).GetEnumerator();
}

#endregion

#region IDictionary

public bool IsFixedSize { get { return ((IDictionary)m_dict).IsFixedSize; } }
ICollection IDictionary.Keys { get { return ((IDictionary)m_dict).Keys; } }
ICollection IDictionary.Values { get { return ((IDictionary)m_dict).Values; } }
public bool IsSynchronized { get { return ((IDictionary)m_dict).IsSynchronized; } }
public object SyncRoot { get { return ((IDictionary)m_dict).SyncRoot; } }

public object this[object key]
{
get { return ((IDictionary)m_dict)[key]; }
set { ((IDictionary)m_dict)[key] = value; }
}

public void Add(object key, object value)
{
((IDictionary)m_dict).Add(key, value);
}

public bool Contains(object key)
{
return ((IDictionary)m_dict).Contains(key);
}

IDictionaryEnumerator IDictionary.GetEnumerator()
{
return ((IDictionary)m_dict).GetEnumerator();
}

public void Remove(object key)
{
((IDictionary)m_dict).Remove(key);
}

public void CopyTo(Array array, int index)
{
((IDictionary)m_dict).CopyTo(array, index);
}

#endregion

#region IDeserializationCallback

public void OnDeserialization(object sender)
{
((IDeserializationCallback)m_dict).OnDeserialization(sender);
}

#endregion

#region ISerializable

protected SerializableDictionaryBase(SerializationInfo info, StreamingContext context) 
{
m_dict = new Dictionary<TKey, TValue>(info, context);
}

public void GetObjectData(SerializationInfo info, StreamingContext context)
{
((ISerializable)m_dict).GetObjectData(info, context);
}

#endregion
}

public static class SerializableDictionary
{
public class Storage<T> : SerializableDictionaryBase.Storage
{
public T data;
}
}

[Serializable]
public class SerializableDictionary<TKey, TValue> : SerializableDictionaryBase<TKey, TValue, TValue>
{
public SerializableDictionary() {}
public SerializableDictionary(IDictionary<TKey, TValue> dict) : base(dict) {}
protected SerializableDictionary(SerializationInfo info, StreamingContext context) : base(info, context) {}

protected override TValue GetValue(TValue[] storage, int i)
{
return storage[i];
}

protected override void SetValue(TValue[] storage, int i, TValue value)
{
storage[i] = value;
}
}

[Serializable]
public class SerializableDictionary<TKey, TValue, TValueStorage> : SerializableDictionaryBase<TKey, TValue, TValueStorage> where TValueStorage : SerializableDictionary.Storage<TValue>, new()
{
public SerializableDictionary() {}
public SerializableDictionary(IDictionary<TKey, TValue> dict) : base(dict) {}
protected SerializableDictionary(SerializationInfo info, StreamingContext context) : base(info, context) {}

protected override TValue GetValue(TValueStorage[] storage, int i)
{
return storage[i].data;
}

protected override void SetValue(TValueStorage[] storage, int i, TValue value)
{
storage[i] = new TValueStorage();
storage[i].data = value;
}
}

普通字典简单的使用

public class SerializedTest : MonoBehaviour {
    //普通字典
    public Dictionary<string, string> dictionary;

    private void Start() {
        //实例化字典
        dictionary = new Dictionary<string, string>();
        //添加键值对
        dictionary.Add("name1", "小明");
        dictionary["name2"] = "小红";
        //检查是否包含指定的键
        string key = "name1";
        Debug.Log($"是否包含键为{key}{dictionary.ContainsKey(key)}");
        //检查是否包含指定的值
        string value = "小红";
        Debug.Log($"是否包含值为{value}{dictionary.ContainsValue(value)}");
        //获取指定键的值
        Debug.Log($"获取键为name2的值:{dictionary["name2"]}");
        //移除键值对
        dictionary.Remove("name1");
        //获取键值对数量
        Debug.Log($"获取键值对数量:{dictionary.Count}");
        //清空字典
        dictionary.Clear();
    }
}

结果
在这里插入图片描述

可序列化字典简单的使用

和普通字典的使用方法一样,只需要把Dictionary换成SerializableDictionary,并且使用时不需要先实例化了

public class SerializedTest : MonoBehaviour {
    //可序列化字典
    public SerializableDictionary<string, string> serializableDictionary;

    private void Start() {
        //添加键值对
        serializableDictionary.Add("name1", "小明");
        serializableDictionary["name2"] = "小红";
        //检查是否包含指定的键
        string key = "name1";
        Debug.Log($"是否包含键为{key}{serializableDictionary.ContainsKey(key)}");
        //获取指定键的值
        Debug.Log($"获取键为name2的值:{serializableDictionary["name2"]}");
        //移除键值对
        serializableDictionary.Remove("name1");
        //获取键值对数量
        Debug.Log($"获取键值对数量:{serializableDictionary.Count}");
        //清空字典
        //serializableDictionary.Clear();
    }
}

结果
在这里插入图片描述
运行时,在挂载的脚本上也可以直接显示字典的值
在这里插入图片描述

二、序列化场景

正常我们都是按场景名称或者索引去跟踪我们的场景吗,这里其实有一个更好的方法,之后在所有的项目中我们都可以去使用它

灵感来源于一篇Unity论坛的SceneField代码:
https://discussions.unity.com/t/inspector-field-for-scene-asset/40763
在这里插入图片描述
解释:这是代码通过使用SceneField类和SceneFieldPropertyDrawer属性绘制器,开发者可以在自定义的脚本中方便地引用和管理场景对象,并在Inspector面板中进行编辑和选择操作。这对于需要频繁切换场景或者处理多个场景的情况非常有用。

新增SerializableScene.cs脚本,如下

using UnityEngine;

#if UNITY_EDITOR
using UnityEditor;
#endif

[System.Serializable]
public class SerializableScene
{
    [SerializeField]
    private Object m_SceneAsset;

    [SerializeField]
    private string m_SceneName = "";
    public string SceneName
    {
        get { return m_SceneName; }
    }

    // 使其与现有的Unity方法(LoadLevel / LoadScene)兼容
    public static implicit operator string(SerializableScene sceneField)
    {
        return sceneField.SceneName;
    }
}

#if UNITY_EDITOR
[CustomPropertyDrawer(typeof(SerializableScene))]
public class SceneFieldPropertyDrawer : PropertyDrawer
{
    public override void OnGUI(Rect _position, SerializedProperty _property, GUIContent _label)
    {
        EditorGUI.BeginProperty(_position, GUIContent.none, _property);
        SerializedProperty sceneAsset = _property.FindPropertyRelative("m_SceneAsset");
        SerializedProperty sceneName = _property.FindPropertyRelative("m_SceneName");
        _position = EditorGUI.PrefixLabel(_position, GUIUtility.GetControlID(FocusType.Passive), _label);
        if (sceneAsset != null)
        {
            // 显示场景选择器,让用户选择一个场景
            sceneAsset.objectReferenceValue = EditorGUI.ObjectField(_position, sceneAsset.objectReferenceValue, typeof(SceneAsset), false);

            // 如果已经选择了场景,则将场景名称保存在场景名称变量中
            if (sceneAsset.objectReferenceValue != null)
            {
                sceneName.stringValue = (sceneAsset.objectReferenceValue as SceneAsset).name;
            }
        }
        EditorGUI.EndProperty();
    }
}
#endif

测试调用

public class SerializedTest : MonoBehaviour {
    //可序列化场景
    public SerializableScene scene1;
    public SerializableScene scene2;

    private void Start() {
        SceneManager.LoadScene(scene1);//跳转场景
    }
}

绑定数据
在这里插入图片描述

三、序列化vector

新增SerializedVector.cs代码

using System;
using UnityEngine;

/// <summary>
/// 定义一个可序列化的Vector3结构
/// </summary>
[Serializable]
public struct SerializedVector3 : IEquatable<SerializedVector3>
{
    public float x, y, z; // 向量的x、y、z分量

    // 构造函数,用于初始化向量
    public SerializedVector3(float x, float y, float z)
    {
        this.x = x;
        this.y = y;
        this.z = z;
    }

    // 判断当前向量是否与其他向量相等
    public bool Equals(SerializedVector3 other)
    {
        return this.x == other.x && this.y == other.y && this.z == other.z;
    }

    // 重写ToString方法,返回向量的字符串表示
    public override string ToString()
    {
        return $"({x},{y},{z})";
    }

    // 重写GetHashCode方法,生成哈希值
    public override int GetHashCode()
    {
        return x.GetHashCode() ^ (y.GetHashCode() << 2) ^ (z.GetHashCode() >> 2);
    }

    // 隐式转换:SerializedVector3 -> Vector3
    public static implicit operator SerializedVector3(Vector3 vector3)
    {
        return new SerializedVector3(vector3.x, vector3.y, vector3.z);
    }

    // 隐式转换:Vector3 -> SerializedVector3
    public static implicit operator Vector3(SerializedVector3 vector3)
    {
        return new Vector3(vector3.x, vector3.y, vector3.z);
    }

    // 隐式转换:SerializedVector3 -> Vector3Int
    public static implicit operator SerializedVector3(Vector3Int vector3)
    {
        return new SerializedVector3(vector3.x, vector3.y, vector3.z);
    }

    // 隐式转换:Vector3Int -> SerializedVector3
    public static implicit operator Vector3Int(SerializedVector3 vector3)
    {
        return new Vector3Int((int)vector3.x, (int)vector3.y, (int)vector3.z);
    }
}

/// <summary>
/// 定义一个可序列化的Vector2结构
/// </summary>
[Serializable]
public struct SerializedVector2 : IEquatable<SerializedVector2>
{
    public float x, y; // 向量的x、y分量

    // 构造函数,用于初始化向量
    public SerializedVector2(float x, float y)
    {
        this.x = x;
        this.y = y;
    }

    // 判断当前向量是否与其他向量相等
    public bool Equals(SerializedVector2 other)
    {
        return this.x == other.x && this.y == other.y;
    }

    // 重写ToString方法,返回向量的字符串表示
    public override string ToString()
    {
        return $"({x},{y})";
    }

    // 重写GetHashCode方法,生成哈希值
    public override int GetHashCode()
    {
        return x.GetHashCode() ^ (y.GetHashCode() << 2);
    }

    // 隐式转换:SerializedVector2 -> Vector2
    public static implicit operator SerializedVector2(Vector2 vector2)
    {
        return new SerializedVector2(vector2.x, vector2.y);
    }

    // 隐式转换:Vector2 -> SerializedVector2
    public static implicit operator Vector2(SerializedVector2 vector2)
    {
        return new Vector2(vector2.x, vector2.y);
    }

    // 隐式转换:SerializedVector2 -> Vector2Int
    public static implicit operator SerializedVector2(Vector2Int vector2)
    {
        return new SerializedVector2(vector2.x, vector2.y);
    }

    // 隐式转换:Vector2Int -> SerializedVector2
    public static implicit operator Vector2Int(SerializedVector2 vector2)
    {
        return new Vector2Int((int)vector2.x, (int)vector2.y);
    }
}

// 扩展方法类,用于转换向量
public static class SerializedVectorExtensions
{
    // 将SerializedVector3转换为Vector3
    public static Vector3 ConverToVector3(this SerializedVector3 sv3)
    {
        return new Vector3(sv3.x, sv3.y, sv3.z);
    }

    // 将Vector3转换为SerializedVector3
    public static SerializedVector3 ConverToSVector3(this Vector3 v3)
    {
        return new SerializedVector3(v3.x, v3.y, v3.z);
    }

    // 将SerializedVector3转换为Vector3Int
    public static Vector3Int ConverToVector3Int(this SerializedVector3 sv3)
    {
        return new Vector3Int((int)sv3.x, (int)sv3.y, (int)sv3.z);
    }

    // 将Vector3Int转换为SerializedVector3
    public static SerializedVector3 ConverToSVector3Int(this Vector3Int v3)
    {
        return new SerializedVector3(v3.x, v3.y, v3.z);
    }

    // 将SerializedVector2转换为Vector2
    public static Vector2 ConverToSVector2(this SerializedVector2 sv2)
    {
        return new Vector2(sv2.x, sv2.y);
    }

    // 将SerializedVector2转换为Vector2Int
    public static Vector2Int ConverToVector2Int(this SerializedVector2 sv2)
    {
        return new Vector2Int((int)sv2.x, (int)sv2.y);
    }

    // 将Vector2转换为SerializedVector2
    public static SerializedVector2 ConverToSVector2(this Vector2 v2)
    {
        return new SerializedVector2(v2.x, v2.y);
    }

    // 将Vector2Int转换为SerializedVector2
    public static SerializedVector2 ConverToSVector2(this Vector2Int v2)
    {
        return new SerializedVector2(v2.x, v2.y);
    }
}

测试调用

//普通Vector
public Vector3 vector3;
public Vector2 vector2;
//可序列化Vector
public SerializedVector3 serializedVector3;
public SerializedVector2 serializedVector2;

//Vector3和SerializedVector3可以随意转换
Debug.Log(vector3);
vector3 = serializedVector3;
Debug.Log(vector3);
serializedVector3 = Vector3.zero;
Debug.Log(serializedVector3);

配置
在这里插入图片描述
结果
在这里插入图片描述

四、序列化color

新增SerializableColor.cs

using UnityEngine;
using System;

/// <summary>
/// 可序列化的颜色结构
/// </summary>
[Serializable]
public struct SerializedColor
{
    public float r, g, b, a; // 颜色的红、绿、蓝和透明度分量

    // 构造函数,用于初始化颜色
    public SerializedColor(float r, float g, float b, float a)
    {
        this.r = r; // 红色分量
        this.g = g; // 绿色分量
        this.b = b; // 蓝色分量
        this.a = a; // 透明度分量
    }

    // 重写ToString方法,返回颜色的字符串表示
    public override string ToString()
    {
        return $"({r},{g},{b},{a})"; // 格式化输出颜色分量
    }

    // 重写GetHashCode方法,返回颜色的哈希值
    public override int GetHashCode()
    {
        return this.ConverToUnityColor().GetHashCode(); // 使用Unity的颜色哈希值
    }

    // 隐式转换:Color -> SerializedColor
    public static implicit operator SerializedColor(Color color)
    {
        return new SerializedColor(color.r, color.g, color.b, color.a); // 从Unity的Color转换为SerializedColor
    }

    // 隐式转换:SerializedColor -> Color
    public static implicit operator Color(SerializedColor color)
    {
        return new Color(color.r, color.g, color.b, color.a); // 从SerializedColor转换为Unity的Color
    }
}

/// <summary>
/// 颜色序列化扩展方法类
/// </summary>
public static class Serialization_ColorExtensions
{
    // 将SerializedColor转换为Unity的Color
    public static Color ConverToUnityColor(this SerializedColor color)
    {
        return new Color(color.r, color.g, color.b, color.a); // 创建并返回Unity的Color
    }

    // 将Unity的Color转换为SerializedColor
    public static SerializedColor ConverToSerializationColor(this Color color)
    {
        return new SerializedColor(color.r, color.g, color.b, color.a); // 创建并返回SerializedColor
    }
}

测试调用

//颜色
public Color color;
//可序列化的颜色
public SerializedColor serializedColor;

color = new Color(1.0f, 0.5f, 0.0f, 1.0f);
Debug.Log(color);
serializedColor = new SerializedColor(0.0f, 1.0f, 0.0f, 1.0f);
Debug.Log(serializedColor);
color = serializedColor;
Debug.Log(color);

配置
在这里插入图片描述

在这里插入图片描述

五、序列化旋转Quaternion

新增SerializedQuaternion.cs,这个其实和vector序列号类似

using System;
using UnityEngine;

/// <summary>
/// 定义一个可序列化的Quaternion结构
/// </summary>
[Serializable]
public struct SerializedQuaternion : IEquatable<SerializedQuaternion>
{
    public float x, y, z, w; // 四元数的x、y、z、w分量

    // 构造函数,用于初始化四元数
    public SerializedQuaternion(float x, float y, float z, float w)
    {
        this.x = x;
        this.y = y;
        this.z = z;
        this.w = w;
    }

    // 判断当前四元数是否与其他四元数相等
    public bool Equals(SerializedQuaternion other)
    {
        return this.x == other.x && this.y == other.y && this.z == other.z && this.w == other.w;
    }

    // 重写ToString方法,返回四元数的字符串表示
    public override string ToString()
    {
        return $"({x}, {y}, {z}, {w})";
    }

    // 重写GetHashCode方法,生成四元数的哈希值
    public override int GetHashCode()
    {
        return x.GetHashCode() ^ (y.GetHashCode() << 2) ^ (z.GetHashCode() >> 2) ^ (w.GetHashCode() << 1);
    }

    // 隐式转换:从Unity的Quaternion类型转换为SerializedQuaternion
    public static implicit operator SerializedQuaternion(Quaternion quaternion)
    {
        return new SerializedQuaternion(quaternion.x, quaternion.y, quaternion.z, quaternion.w);
    }

    // 隐式转换:从SerializedQuaternion转换为Unity的Quaternion类型
    public static implicit operator Quaternion(SerializedQuaternion quaternion)
    {
        return new Quaternion(quaternion.x, quaternion.y, quaternion.z, quaternion.w);
    }
}

// 扩展方法类,用于转换四元数
public static class SerializedQuaternionExtensions
{
    // 将SerializedQuaternion转换为Unity的Quaternion类型
    public static Quaternion ConvertToQuaternion(this SerializedQuaternion sq)
    {
        return new Quaternion(sq.x, sq.y, sq.z, sq.w);
    }

    // 将Unity的Quaternion类型转换为SerializedQuaternion
    public static SerializedQuaternion ConvertToSQuaternion(this Quaternion q)
    {
        return new SerializedQuaternion(q.x, q.y, q.z, q.w);
    }
}

测试调用

//旋转
public Quaternion quaternion;
//可序列化旋转
public SerializedQuaternion serializedQuaternion;

// 定义一个欧拉角(绕X、Y、Z轴的旋转)    
Vector3 eulerAngles = new Vector3(30f, 45f, 60f); 
// 将欧拉角转换为四元数
quaternion = Quaternion.Euler(eulerAngles);
// 将四元数转换为欧拉角
eulerAngles = quaternion.eulerAngles;
Debug.Log(eulerAngles);

//直接赋值
serializedQuaternion = Quaternion.Euler(eulerAngles);
serializedQuaternion = quaternion;

//互相转换
serializedQuaternion = quaternion.ConvertToSQuaternion();
quaternion = serializedQuaternion.ConvertToQuaternion();

完结

赠人玫瑰,手有余香!如果文章内容对你有所帮助,请不要吝啬你的点赞评论和关注,你的每一次支持都是我不断创作的最大动力。当然如果你发现了文章中存在错误或者有更好的解决方法,也欢迎评论私信告诉我哦!

好了,我是向宇https://xiangyu.blog.csdn.net

一位在小公司默默奋斗的开发者,闲暇之余,边学习边记录分享,站在巨人的肩膀上,通过学习前辈们的经验总是会给我很多帮助和启发!如果你遇到任何问题,也欢迎你评论私信或者加群找我, 虽然有些问题我也不一定会,但是我会查阅各方资料,争取给出最好的建议,希望可以帮助更多想学编程的人,共勉~
在这里插入图片描述


原文地址:https://blog.csdn.net/qq_36303853/article/details/142725048

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!