机器学习简介--NLP(二)
机器学习简介
机器学习例子
问题: 2,4,6,8,?,?已知前面的数,求后面的数是什么?
机器学习解决方案 从前四个数,即前4个示例,找到一个函数(模型,公式)满足前四个数的规律;后面的数则使用这个函数去推理得到。
1.找到一个函数y=f(x)使得将其满足上面的已知数据
2.得到这个函数,去预测其他的未知的数
上面的函数为:y=2*x
引申:上面是简单的数字,这个数字可以变成复杂的向量、矩阵;这个函数也可以是多个公司拼接,从而就可以符合更加复杂任务的规律。其中2就是我们在数字中找到的规律,y=2x就是我们训练出来的模型。
机器学习概念: 通过观察有限数量的样本,去找到一个规律或者公式,满足已知样板的x、y的关系的过程。
数据的重要性: 上面的案例中,如果只给了2,4两个已知的数,那么规律就有可能是:y=2x;也可以是y=x^2 ;所以规律正确与数据有很大的关系。
困难点: 上面的规律是非常简单的,但是对于复杂的事情,我们人都很难去梳理出规律,所以我们希望把数据交给机器,让机器把规律找出来 。
机器学习分类
有监督学习
核心目标: 建立一个模型(函数),来描述输入(x)与输出(y)之间的关系;从而使新的输入来临时时,我们可以预测输出。
要求:需要一定输入与输出有关联关系并且能够数值化表示的训练样本。
有监督学习的应用
任务类型1:文本分类任务
输入:文本
输出:类别
关系:文本的内容决定着文本的类别
比如判断一句话是不是曹贼所说
任务类型2:机器翻译
输入:A语种文本
输出:B语种文本
关系:A语种表达的意思,在B语种中有对应得意思
比如太阳,英文就是son
无监督学习
**释义:**给与机器得数据是没有标注信息得,简单理解就是只有输入,这种情况也可以让机器进行一些分析
应用场景:聚类、降维、找特征值等等
聚类
**释义:**比如将一系列水果,按照大小、颜色、口味对应不同得数字,把水果转换为向量数子表示,这个时候通过空间向量得计算,可以判断那些向量比较接近,那么按照一定得算法就可以将它们分类,虽然我们不清楚分得是什么类
降维
释义: 我们在整理了1000个人的各项数据,包括用100个维度去表示他们各自的信息:身高、是否结婚、工作、胖瘦、年龄、手长、腰围等;但是对于我们某一个任务来说,某些维度的信息没有用,比如是否结婚不关注,那么我们通过一定的算法,将其中某些不用的维度去除掉,降低的数据的复杂性,这就是降维。
机器学习常见概念
数据集
1.训练集
释义:用于模型训练的数据集合
举例: 相当于一个孩子从白纸到成人需要的教训,只是这个教训在这里是提取准备好的
2. 验证集
释义:对于每一种任务一般都有多种算法可以选择,一般会使用验证集用于对比不同算法的效果差异
举例: 培养孩子时,我们需要进行中考、高考,测试这个孩子在某方面的天赋和培养效果,这里的验证集就是这个意思。
3.测试集
释义:最终用来评判算法模型效果的数据集合
举例: 相当于孩子成年了,放到社会上去经历毒打,如果表现得不错,就说明这个号成了,表现差,就重新练一个。
k折交叉验证
释义:初始采样分割成k个子样本,一个单独的子样本本保留作为验证模型的数据,其他的k-1个样本用来训练,交叉重复k次,每个子样本验证一次,平均k次的结果。就是需要训练K次。
过拟合
**释义:**模型失去泛化能力,如果模型在训练集和验证集上都有很好的表现,但是在测试集上表现很差,一般认为发生过拟合。
举例: 高考笔试成绩很好,读书的任务完成得很棒,但是出了社会实际做事不行,是书呆子,就是过拟合。
欠拟合
释义: 模型没能建立起合理的输入输出之间的映射,当输入训练集中的样本时,预测结果和标注结果依然相差很大。
举例 平时就学不进去,别说高考,从小学到初高中,成绩都很差,就是欠拟合,这个时候就看是不是没认真学习,学习方法不对;还是这个娃就是蠢,那么就重新生一个,看看有没有天赋。
评价指标
释义: 为了评价算法效果好坏,需要找到一种评价模型的计算指标例如:准确率、召回率、F1值、TopK、BLEU等
举例: 学生的评价,德智体美劳,高考成绩等
原文地址:https://blog.csdn.net/m0_64531791/article/details/140110999
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!