自学内容网 自学内容网

(PySpark)RDD实验实战——取一个数组的中间值

实验环境:

提前准备好findspark,pyspark,py4j等库

import findspark
from pyspark import SparkContext, SparkConf

findspark.init()
#初始化spark,默认为你所设定的环境变量

conf = SparkConf().setAppName("jsytest").setMaster("local[4]")
#创建一个SparkConf对象,用于配置Spark应用程序,用setAppName来设置程序名称,
#用setMaster来设置运行模式和线程数,这里为本地模式,4个线程

sc = SparkContext(conf=conf)
#创建一个SparkContext对象,它是与Spark集群通信的主要接口
# sc.stop()  #关闭spark上下文


data = [(1),(5),(7),(10),(23),(20),(6),(5),(10),(7),(10)]
#创建所需的数据集

rdd = sc.parallelize(data)
#用parallelize方法将data中的数据结构并行化成RDD

rdd.sortBy(lambda x:x, ascending=True,numPartitions=1).collect()
#rdd.sortBy()用于对RDD中的元素按照指定的排序键进行排序
#rdd.sortBy(keyfunc, ascending=True, numPartitions=None)
#keyfunc,是从 RDD 的每个元素中提取用于排序的键,多分区的话可以通过指定key的排序,来达到操作目的
#ascending表示排序的顺序。 True为升序,False为降序。
#numPartitions表示最终返回结果RDD的分区数。

ysj=int(rdd.count()/2)
#取data的数据长度并取中间值

ss=rdd.sortBy(lambda x:x, ascending=True,numPartitions=1).collect()
##把最终排序导入ss数组中

print(ss[ysj])
#输出结果

最终全代码演示如下:

import findspark
from pyspark import SparkContext, SparkConf
findspark.init()
conf = SparkConf().setAppName("jsytest").setMaster("local[4]")
sc = SparkContext(conf=conf)
data = [(1),(5),(7),(10),(23),(20),(6),(5),(10),(7),(10)]
rdd = sc.parallelize(data)
rdd.sortBy(lambda x:x, ascending=True,numPartitions=1).collect()
ysj=int(rdd.count()/2)
ss=rdd.sortBy(lambda x:x, ascending=True,numPartitions=1).collect()
print(ss[ysj])

运行结果演示

7


原文地址:https://blog.csdn.net/m0_75208179/article/details/142322546

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!