从0开始深度学习(10)——softmax的简洁实现
同样的,本章将使用torch自带的API简洁的实现softmax回归
1 读取数据
使用自带的DataLoader
import torch
from torch import nn,optim
import torchvision
from torch.utils import data
from torchvision import transforms,datasets
from torch.utils.data import DataLoader
# 定义超参数
batch_size = 256
learning_rate = 0.01
epochs = 5
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)) # 标准化到[-1, 1]区间,加快计算
])
# 加载Fashion-MNIST数据集
train_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=True, download=False, transform=transform)
test_dataset = datasets.FashionMNIST(root='D:/DL_Data/', train=False, download=False, transform=transform)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
2 定义模型,初始化参数
使用torch
自带的nn
模型,输入层用Flatten()
,因为要把2828的展开成一维,输出层用Linear
,前面我们说过,全连接层可以看作线性模型,也符合softmax的特征,输入是784,因为2828展开后是784,输出是10,因为有10和可能预测到的类别
# 定义模型
net = nn.Sequential(
nn.Flatten(),
nn.Linear(784,10)
)
# 初始化参数
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
3 定义损失函数和优化器
使用torch自带的
# 损失函数与优化器
criterion = nn.CrossEntropyLoss() # 使用交叉熵损失,因为它包含了softmax
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
4 训练
# 训练模型
for epoch in range(epochs):
net.train()
running_loss = 0.0
running_corrects = 0
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 计算正确率
_, preds = torch.max(output, 1)
running_loss += loss.item() * data.size(0)
running_corrects += torch.sum(preds == target.data)
if batch_idx % 10 == 0:# 每训练10步输出一次loss和acc
epoch_loss = running_loss / ((batch_idx + 1) * batch_size)
epoch_acc = running_corrects.double() / ((batch_idx + 1) * batch_size)
print(f'Epoch [{epoch+1}/{epochs}], Step [{batch_idx+1}/{len(train_loader)}], Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}')
# 输出每个epoch的平均损失和正确率
epoch_loss = running_loss / len(train_dataset)
epoch_acc = running_corrects.double() / len(train_dataset)
print(f'Epoch [{epoch+1}/{epochs}] Summary - Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}')
5 预测
# 定义 Fashion-MNIST 标签的文本描述
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
# 预测并显示结果
def predict(net, test_iter, n=6):
for X, y in test_iter:
break # 只取一个批次的数据
trues = get_fashion_mnist_labels(y)
preds = get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true + '\n' + pred for true, pred in zip(trues, preds)]
n = min(n, X.shape[0])
fig, axs = plt.subplots(1, n, figsize=(12, 3))
for i in range(n):
axs[i].imshow(X[i].permute(1, 2, 0).squeeze().numpy(), cmap='gray')
axs[i].set_title(titles[i])
axs[i].axis('off')
plt.show()
# 调用预测函数
predict(net, test_iter, n=10)
原文地址:https://blog.csdn.net/m0_53115174/article/details/142862074
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!