Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
章节内容
上一节我们完成了:
- MapReduce的介绍
- Hadoop序列化介绍
- Mapper编写规范
- Reducer编写规范
- Driver编写规范
- WordCount功能开发
- WordCount本地测试
背景介绍
这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。
之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。
注意,如果你和我一样,打算用公网部署,那一定要做好防火墙策略,避免不必要的麻烦!!!
请大家都以学习为目的,也请不要对我的服务进行嗅探或者攻击!!!
但是有一台公网服务器我还运行着别的服务,比如前几天发的:autodl-keeper 自己写的小工具,防止AutoDL机器过期的。还跑着别的Web服务,所以只能挤出一台 2C2G 的机器。那我的配置如下了:
- 2C4G 编号 h121
- 2C4G 编号 h122
- 2C2G 编号 h123
业务需求
平常我们在业务上,有很多时候表都是分开的,通过一些 id
或者 code
来进行关联。
在大数据的情况下,也有很多这种情况,我们需要进行联表操作。
表1
项目编码projectCode 项目名projectName
表2
项目编码projectCode 项目类型projectType 项目分类projectFrom
在 SQL
中,可以通过 LEFT JOIN
来实现字段补齐。大数据下,也需要进行这样的操作,我们需要借助 MapReduce
。
表1测试
"8aea9ba2-435c-48bd-9751-1cbd4c344d4e""社区项目1"
"02d9c090-e467-42b6-9c14-52cacd72a4a8""社区项目2"
"244dcaca-0778-4eec-b3a2-403f8fac1dfb""智慧社区"
"94befb97-d1af-43f2-b5d5-6df9ce5b9393""公交站点"
"f44c8d10-bc92-4398-ad9b-8c11dd48ad7c""街道布建"
"2e556d83-bb56-45b1-8d6e-00510902c464""街道公交站点"
"3ba00542-eac9-4399-9c2b-3b06e671f4c9""未命名项目1"
"5a5982d7-7257-422f-822a-a0c2f31c28d1""未命名项目2"
表2测试
"8aea9ba2-435c-48bd-9751-1cbd4c344d4e""重要类型""种类1"
"02d9c090-e467-42b6-9c14-52cacd72a4a8""重要类型""种类1"
"244dcaca-0778-4eec-b3a2-403f8fac1dfb""重要类型""种类1"
"94befb97-d1af-43f2-b5d5-6df9ce5b9393""普通类型""种类1"
"f44c8d10-bc92-4398-ad9b-8c11dd48ad7c""普通类型""种类2"
"2e556d83-bb56-45b1-8d6e-00510902c464""普通类型""种类2"
"3ba00542-eac9-4399-9c2b-3b06e671f4c9""一般类型""种类2"
"5a5982d7-7257-422f-822a-a0c2f31c28d1""一般类型""种类2"
SQL连表
假设我们使用SQL的方式联表:
SELECT
*
FROM
t_project
LEFT JOIN
t_project_info
ON
t_project.projectCode=t_project_info.projectCode
Reduce JOIN
有时候,表可能过大,无法支持我们使用 SQL 进行连表查询。
这里我们编写一个程序来完成操作。
ProjectBean
这里是最终的Bean类,里边是两个表把字段补齐的结果,一会儿我们将使用这个类进行表的连接。
package icu.wzk.demo03;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class ProjectBean implements Writable {
private String projectCode;
private String projectName;
private String projectType;
private String projectFrom;
private String flag;
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeUTF(projectCode);
dataOutput.writeUTF(projectName);
dataOutput.writeUTF(projectType);
dataOutput.writeUTF(projectFrom);
dataOutput.writeUTF(flag);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
this.projectCode = dataInput.readUTF();
this.projectName = dataInput.readUTF();
this.projectType = dataInput.readUTF();
this.projectFrom = dataInput.readUTF();
this.flag = dataInput.readUTF();
}
public ProjectBean(String projectCode, String projectName, String projectType, String projectFrom, String flag) {
this.projectCode = projectCode;
this.projectName = projectName;
this.projectType = projectType;
this.projectFrom = projectFrom;
this.flag = flag;
}
public ProjectBean() {
}
@Override
public String toString() {
return "ProjectBean{" +
"projectCode='" + projectCode + '\'' +
", projectName='" + projectName + '\'' +
", projectType='" + projectType + '\'' +
", projectFrom='" + projectFrom + '\'' +
", flag=" + flag + '\'' +
'}';
}
public String getProjectCode() {
return projectCode;
}
public void setProjectCode(String projectCode) {
this.projectCode = projectCode;
}
public String getProjectName() {
return projectName;
}
public void setProjectName(String projectName) {
this.projectName = projectName;
}
public String getProjectType() {
return projectType;
}
public void setProjectType(String projectType) {
this.projectType = projectType;
}
public String getProjectFrom() {
return projectFrom;
}
public void setProjectFrom(String projectFrom) {
this.projectFrom = projectFrom;
}
public String getFlag() {
return flag;
}
public void setFlag(String flag) {
this.flag = flag;
}
}
Reduce Driver
package icu.wzk.demo03;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class ReducerJoinDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
// String inputPath = args[0];
// String outputPath = args[1];
// === 测试环境 ===
String inputPath = "project_test";
String outputPath = "project_test_output";
// === ===
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration, "ReducerJoinDriver");
job.setJarByClass(ReducerJoinDriver.class);
job.setMapperClass(ReducerJoinMapper.class);
job.setReducerClass(ReducerJoinReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(ProjectBean.class);
job.setOutputKeyClass(ProjectBean.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(inputPath));
FileOutputFormat.setOutputPath(job, new Path(outputPath));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
ReduceMapper
package icu.wzk.demo03;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class ReducerJoinMapper extends Mapper<LongWritable, Text, Text, ProjectBean> {
String name;
ProjectBean projectBean = new ProjectBean();
Text k = new Text();
@Override
protected void setup(Mapper<LongWritable, Text, Text, ProjectBean>.Context context) throws IOException, InterruptedException {
// 获取路径信息
name = context.getInputSplit().toString();
}
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, ProjectBean>.Context context) throws IOException, InterruptedException {
String line = value.toString();
if (name.contains("layout_project")) {
// layout_project
String[] fields = line.split("\t");
projectBean.setProjectCode(fields[0]);
projectBean.setProjectName(fields[1]);
projectBean.setProjectType("");
projectBean.setProjectFrom("");
projectBean.setFlag("layout_project");
// projectCode 关联
k.set(fields[0]);
} else {
// project_info
String[] fields = line.split("\t");
projectBean.setProjectCode(fields[0]);
projectBean.setProjectName("");
projectBean.setProjectType(fields[1]);
projectBean.setProjectFrom(fields[2]);
projectBean.setFlag("project_info");
// projectCode 关联
k.set(fields[0]);
}
context.write(k, projectBean);
}
}
ReduceReducer
package icu.wzk.demo03;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class ReducerJoinReducer extends Reducer<Text, ProjectBean, ProjectBean, NullWritable> {
@Override
protected void reduce(Text key, Iterable<ProjectBean> values, Reducer<Text, ProjectBean, ProjectBean, NullWritable>.Context context) throws IOException, InterruptedException {
List<ProjectBean> dataList = new ArrayList<>();
ProjectBean deviceProjectBean = new ProjectBean();
for (ProjectBean pb : values) {
if ("layout_project".equals(pb.getFlag())) {
// layout_project
ProjectBean projectProjectBean = new ProjectBean(
pb.getProjectCode(),
pb.getProjectName(),
pb.getProjectType(),
pb.getProjectFrom(),
pb.getFlag()
);
dataList.add(projectProjectBean);
} else {
// project_info
deviceProjectBean = new ProjectBean(
pb.getProjectCode(),
pb.getProjectName(),
pb.getProjectType(),
pb.getProjectFrom(),
pb.getFlag()
);
}
}
for (ProjectBean pb : dataList) {
pb.setProjectType(deviceProjectBean.getProjectType());
pb.setProjectFrom(deviceProjectBean.getProjectFrom());
context.write(pb, NullWritable.get());
}
}
}
运行结果
ProjectBean{projectCode='"02d9c090-e467-42b6-9c14-52cacd72a4a8"', projectName='"社区项目2"', projectType='"重要类型"', projectFrom='"种类1"', flag=layout_project'}
ProjectBean{projectCode='"244dcaca-0778-4eec-b3a2-403f8fac1dfb"', projectName='"智慧社区"', projectType='"重要类型"', projectFrom='"种类1"', flag=layout_project'}
ProjectBean{projectCode='"2e556d83-bb56-45b1-8d6e-00510902c464"', projectName='"街道公交站点"', projectType='"普通类型"', projectFrom='"种类2"', flag=layout_project'}
ProjectBean{projectCode='"3ba00542-eac9-4399-9c2b-3b06e671f4c9"', projectName='"未命名项目1"', projectType='"一般类型"', projectFrom='"种类2"', flag=layout_project'}
ProjectBean{projectCode='"5a5982d7-7257-422f-822a-a0c2f31c28d1"', projectName='"未命名项目2"', projectType='"一般类型"', projectFrom='"种类2"', flag=layout_project'}
ProjectBean{projectCode='"8aea9ba2-435c-48bd-9751-1cbd4c344d4e"', projectName='"社区项目1"', projectType='"重要类型"', projectFrom='"种类1"', flag=layout_project'}
ProjectBean{projectCode='"94befb97-d1af-43f2-b5d5-6df9ce5b9393"', projectName='"公交站点"', projectType='"普通类型"', projectFrom='"种类1"', flag=layout_project'}
ProjectBean{projectCode='"f44c8d10-bc92-4398-ad9b-8c11dd48ad7c"', projectName='"街道布建"', projectType='"普通类型"', projectFrom='"种类2"', flag=layout_project'}
方案缺点
JOIN
操作是在 reduce
阶段完成的,reduce端处理压力过大
,map
节点的运算负载很低
,资源利用
率不高
。
原文地址:https://blog.csdn.net/w776341482/article/details/140170405
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!