自学内容网 自学内容网

Connection模块类功能联调(整合三)

目录

概要

tcp_cli.cc

tcp_srv.cc

server.hpp

测试结果


第三次整合

概要

本主要是将以下模块进行整合测试

Connection管理类实现(模块六)-CSDN博客

EventLoop整合与TimerWheel联合调试(整合二)-CSDN博客

tcp_cli.cc

#include "../source/server.hpp"

int main()
{
    Socket cli_sock;
    cli_sock.CreateClient(8500, "127.0.0.1");
    for(int i = 0; i < 5; i++)
    {
        std::string str = "hello qingfengyuge!";
        cli_sock.Send(str.c_str(), str.size());
        char buf[1024] = {0};
        cli_sock.Recv(buf, 1023);
        DBG_LOG("%s", buf);
        sleep(1);
    }
    while (1) sleep(1);
    return 0;
}

tcp_srv.cc

#include "../source/server.hpp"

// 管理所有的连接
std::unordered_map<uint64_t, PtrConnection> _conns;
uint64_t conn_id = 0;
void ConnectionDestroy(const PtrConnection &conn)
{
    _conns.erase(conn->Id());
}
void OnConnected(const PtrConnection &conn)
{
    DBG_LOG("NEW CONNECTION:%p", conn.get());
}
void OnMessage(const PtrConnection &conn, Buffer *buf)
{
    DBG_LOG("%s", buf->ReadPosition());
    buf->MoveReadOffset(buf->ReadAbleSize());
    std::string str = "Hello World";
    conn->Send(str.c_str(), str.size());
    // conn->Shutdown(); // 调用关闭接口
}

void Acceptor(EventLoop *loop, Channel *lst_channel)
{
    int fd = lst_channel->Fd();
    int newfd = accept(fd, NULL, NULL);
    if (newfd < 0)
    {
        return;
    }

    conn_id++;
    PtrConnection conn(new Connection(loop, conn_id, newfd));
    conn->SetMessageCallback(std::bind(OnMessage, std::placeholders::_1, std::placeholders::_2));
    conn->SetSrvClosedCallback(std::bind(ConnectionDestroy, std::placeholders::_1));
    conn->SetConnectedCallback(std::bind(OnConnected, std::placeholders::_1));           

    conn->EnableInactiveRelease(10); // 启动非活跃超时销毁
    conn->Established(); // 就绪初始化
    _conns.insert(std::make_pair(conn_id, conn));
}

int main()
{
    srand(time(NULL));
    EventLoop loop;
    Socket lst_sock;
    bool ret = lst_sock.CreateServer(8500);
    // 为监听套接字,创建一个Channel进行事件的管理,以及事件的处理
    Channel channel(&loop, lst_sock.Fd());
    // 回调中,获取新连接,为新连接创建Channel并且添加监控
    channel.SetReadCallback(std::bind(Acceptor, &loop, &channel));
    channel.EnableRead(); // 启动可读事件监控
    while (1)
    {
        loop.Start();
    }
    lst_sock.Close();
    return 0;
}

server.hpp

#include <iostream>
#include <vector>
#include <cstdint>
#include <cassert>
#include <ctime>
#include <cstring>
#include <string>
#include <unistd.h>
#include <typeinfo>
#include <thread>
#include <mutex>
#include <memory>
#include <fcntl.h>
#include <functional>
#include <unordered_map>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <sys/timerfd.h>
#include <sys/socket.h>
#include <sys/types.h>

#define INF 0
#define DBG 1
#define ERR 2
#define LOG_LEVEL DBG

#define LOG(level, format, ...)                                                             \
    do                                                                                      \
    {                                                                                       \
        if (level < LOG_LEVEL)                                                              \
            break;                                                                          \
        time_t t = time(NULL);                                                              \
        struct tm *ltm = localtime(&t);                                                     \
        char tmp[32] = {0};                                                                 \
        strftime(tmp, 31, "%H:%M:%S", ltm);                                                 \
        fprintf(stdout, "[%s %s:%d] " format "\n", tmp, __FILE__, __LINE__, ##__VA_ARGS__); \
    } while (0)

#define INF_LOG(format, ...) LOG(INF, format, ##__VA_ARGS__)
#define DBG_LOG(format, ...) LOG(DBG, format, ##__VA_ARGS__)
#define ERR_LOG(format, ...) LOG(ERR, format, ##__VA_ARGS__)

// 缓冲区类
#define BUFFER_DEFAULT_SIZE 1024 // Buffer 默认起始大小
class Buffer
{
private:
    std::vector<char> _buffer; // 使用vector进行内存空间管理
    uint64_t _reader_idx;      // 读偏移
    uint64_t _writer_idx;      // 写偏移
public:
    Buffer() : _reader_idx(0), _writer_idx(0), _buffer(BUFFER_DEFAULT_SIZE) {}
    char *Begin() { return &*_buffer.begin(); }
    // 获取当前写入起始地址
    char *WritePosition() { return Begin() + _writer_idx; }
    // 获取当前读取起始地址
    char *ReadPosition() { return Begin() + _reader_idx; }
    // 获取缓冲区末尾空闲空间大小--写偏移之后的空闲空间, 总体空间大小减去写偏移
    uint64_t TailIdleSize() { return _buffer.size() - _writer_idx; }
    // 获取缓冲区起始空闲空间大小--读偏移之前的空闲空间
    uint64_t HeadIdleSize() { return _reader_idx; }
    // 获取可读数据大小 = 写偏移 - 读偏移
    uint16_t ReadAbleSize() { return _writer_idx - _reader_idx; };
    // 将读偏移向后移动
    void MoveReadOffset(uint64_t len)
    {
        if (len == 0)
            return;
        // 向后移动的大小, 必须小于可读数据大小
        assert(len <= ReadAbleSize());
        _reader_idx += len;
    }
    // 将写偏移向后移动
    void MoveWriteOffset(uint64_t len)
    {
        // 向后移动的大小,必须小于当前后边的空闲空间大小
        assert(len <= TailIdleSize());
        _writer_idx += len;
    }
    // 确保可写空间足够(整体空闲空间够了就移动数据,否则就扩容)
    void EnsureWriteSpace(uint64_t len)
    {
        // 如果末尾空闲空间大小足够,直接返回
        if (TailIdleSize() >= len)
        {
            return;
        }
        // 末尾空闲空间不够,则判断加上起始位置的空闲空间大小是否足够,够了就将数据移动到起始位置
        if (len <= TailIdleSize() + HeadIdleSize())
        {
            // 将数据移动到起始位置
            uint64_t rsz = ReadAbleSize();                            // 把当前数据大小先保存起来
            std::copy(ReadPosition(), ReadPosition() + rsz, Begin()); // 把可读数据拷贝到起始位置
            _reader_idx = 0;                                          // 将读偏移归0
            _writer_idx = rsz;                                        // 将写位置置为可读数据大小, 因为当前的可读数据大小就是写偏移量
        }
        else
        {
            // 总体空间不够,则需要扩容,不移动数据,直接给写偏移之后扩容足够空间即可
            _buffer.resize(_writer_idx + len);
        }
    }
    // 写入数据
    void Write(const void *data, uint64_t len)
    {
        // 1.保证有足够空间, 2.拷贝数据进去
        EnsureWriteSpace(len);
        const char *d = (const char *)data;
        std::copy(d, d + len, WritePosition());
    }
    void WriteAndPush(const void *data, uint64_t len)
    {
        Write(data, len);
        MoveWriteOffset(len);
    }
    void WriteString(const std::string &data)
    {
        return Write(data.c_str(), data.size());
    }
    void WriteStringAndPush(const std::string &data)
    {
        WriteString(data);
        MoveWriteOffset(data.size());
    }
    void WriteBuffer(Buffer &data)
    {
        return Write(data.ReadPosition(), data.ReadAbleSize());
    }
    void WriteBufferAndPush(Buffer &data)
    {
        WriteBuffer(data);
        MoveWriteOffset(data.ReadAbleSize());
    }
    // 读取数据
    void Read(void *buf, uint64_t len)
    {
        // 要求获取的数据大小必须小于可读数据大小
        assert(len <= ReadAbleSize());
        std::copy(ReadPosition(), ReadPosition() + len, (char *)buf);
    }
    void ReadAndPop(void *buf, uint64_t len)
    {
        Read(buf, len);
        MoveReadOffset(len);
    }
    std::string ReadAsString(uint64_t len)
    {
        // 要求获取的数据大小必须小于可读数据大小
        assert(len <= ReadAbleSize());
        std::string str;
        str.resize(len);
        Read(&str[0], len); // 这里不直接用str.c_str()的原因是,这个的返回值是const类型
        return str;
    }
    std::string ReadAsStringAndPop(uint64_t len)
    {
        assert(len <= ReadAbleSize());
        std::string str = ReadAsString(len);
        MoveReadOffset(len);
        return str;
    }
    char *FindCRLF()
    {
        char *res = (char *)memchr(ReadPosition(), '\n', ReadAbleSize());
        return res;
    }
    // 这种情况针对的是,通常获取一行数据
    std::string GetLine()
    {
        char *pos = FindCRLF();
        if (pos == NULL)
            return "";
        // +1 是为了把换行字符也取出来
        return ReadAsString(pos - ReadPosition() + 1);
    }
    std::string GetLineAndPop()
    {
        std::string str = GetLine();
        MoveReadOffset(str.size());
        return str;
    }

    // 清空缓冲区
    void Clear()
    {
        // 只需要将偏移量归0即可
        _reader_idx = 0;
        _writer_idx = 0;
    }
};

// 套接字类
#define MAX_LISTEN 1024
class Socket
{
private:
    int _sockfd;

public:
    Socket() : _sockfd(-1) {}
    Socket(int fd) : _sockfd(fd) {}
    ~Socket() { Close(); };
    int Fd() { return _sockfd; }
    // 创建套接字
    bool Create()
    {
        // int socket(int domain, int type, int protocol)
        _sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
        if (_sockfd < 0)
        {
            ERR_LOG("CREATE SOCKET FAILED!");
            return false;
        }
        return true;
    }
    // 绑定地址信息
    bool Bind(const std::string &ip, uint64_t port)
    {
        struct sockaddr_in addr;
        addr.sin_family = AF_INET;
        addr.sin_port = htons(port);
        addr.sin_addr.s_addr = inet_addr(ip.c_str());
        socklen_t len = sizeof(struct sockaddr_in);
        // int bind(int sockfd, struct sockaddr* addr, socklen_t len)
        int ret = bind(_sockfd, (struct sockaddr *)&addr, len);
        if (ret < 0)
        {
            ERR_LOG("BIND ADDRESS FAILED!");
            return false;
        }
        return true;
    }
    // 开始监听
    bool Listen(int backlog = MAX_LISTEN)
    {
        // int listen(int backlog)
        int ret = listen(_sockfd, backlog);
        if (ret < 0)
        {
            ERR_LOG("SOCKET LISTEN FAILED!");
            return false;
        }
        return true;
    }
    // 向服务器发起连接
    bool Connect(const std::string &ip, uint16_t port)
    {
        struct sockaddr_in addr;
        addr.sin_family = AF_INET;
        addr.sin_port = htons(port);
        addr.sin_addr.s_addr = inet_addr(ip.c_str());
        socklen_t len = sizeof(struct sockaddr_in);
        // int connect(int sockfd, struct sockaddr* addr, socklen_t len)
        int ret = connect(_sockfd, (struct sockaddr *)&addr, len);
        if (ret < 0)
        {
            ERR_LOG("CONNECT SERVER FAILED!");
            return false;
        }
        return true;
    }
    // 获取新连接
    int Accept()
    {
        // int accept(int sockfd, struct sockaddr *addr, socklen_t *len);
        int newfd = accept(_sockfd, NULL, NULL);
        if (newfd < 0)
        {
            ERR_LOG("SOCKET ACCEPT FAILED!");
            return -1;
        }
        return newfd;
    }
    // 接收数据
    ssize_t Recv(void *buf, size_t len, int flag = 0) // 0 阻塞
    {
        // ssize_t recv(int sockfd, void *buf, size_t len, int flag)
        ssize_t ret = recv(_sockfd, buf, len, flag);
        if (ret <= 0)
        {
            // EAGAIN 当前的接收缓冲区中没用数据了,在非阻塞的情况下才有这个错误
            // EINTR 表示当前socket的阻塞等待,被信号打断了
            if (errno == EAGAIN || errno == EINTR)
            {
                return 0; // 表示这次没用接收到数据
            }
            ERR_LOG("SOCKET RECV FAILED!");
            return -1;
        }
        return ret; // 实际接收的数据长度
    }
    ssize_t NonBlockRecv(void *buf, size_t len)
    {
        return Recv(buf, len, MSG_DONTWAIT); // MSG_DONTWAIT 表示当前接收为非阻塞
    }
    // 发送数据
    ssize_t Send(const void *buf, size_t len, int flag = 0)
    {
        // ssize_t send(int sockfd, void *data, size_t len, int flag)
        ssize_t ret = send(_sockfd, buf, len, flag);
        if (ret < 0)
        {
            if (errno == EAGAIN || errno == EINTR)
            {
                return 0;
            }
            ERR_LOG("SOCKET SEND FAILED!!");
            return -1;
        }
        return ret; // 实际发送的数据长度
    }
    ssize_t NonBlockSend(void *buf, size_t len)
    {
        if (len == 0)
            return 0;
        return Send(buf, len, MSG_DONTWAIT); // MSG_DONTWAIT 表示当前接收为非阻塞
    }
    // 关闭套接字
    void Close()
    {
        if (_sockfd != -1)
        {
            close(_sockfd);
            _sockfd = -1;
        }
    }
    // 创建一个服务器连接
    bool CreateServer(uint16_t port, const std::string &ip = "0.0.0.0", bool block_flag = false) // 接收全部
    {
        // 1.创建套接字 2.绑定地址 3.开始监听 4.设置非阻塞 5.启动地址重用
        if (Create() == false)
            return false;
        if (block_flag) // 默认阻塞
            NonBlock();
        if (Bind(ip, port) == false)
            return false;
        if (Listen() == false)
            return false;
        ReuseAddress();
        return true;
    }
    // 创建一个客户端连接
    bool CreateClient(uint16_t port, const std::string &ip)
    {
        // 1.创建套接字 2.指向连接服务器
        if (Create() == false)
            return false;
        if (Connect(ip, port) == false)
            return false;
        return true;
    }
    // 设置套接字选项 -- 开启地址端口重用
    void ReuseAddress()
    {
        // int setsockopt(int fd, int level, int optname, void *val, int vallen)
        int val = 1;
        setsockopt(_sockfd, SOL_SOCKET, SO_REUSEADDR, (void *)&val, sizeof(int)); // 地址
        val = 1;
        setsockopt(_sockfd, SOL_SOCKET, SO_REUSEPORT, (void *)&val, sizeof(int)); // 端口号
    }
    // 设置套接字阻塞属性 -- 设置为非阻塞
    void NonBlock()
    {
        // int fcntl(int fd, int cmd, .../*arg*/)
        int flag = fcntl(_sockfd, F_GETFL, 0);
        fcntl(_sockfd, F_SETFL, flag | O_NONBLOCK);
    }
};

class Poller; // 整合测试1:声明
class EventLoop;
// Channel类
class Channel
{
private:
    int _fd;
    EventLoop *_loop;
    uint32_t _events;  // 当前需要监控的事件
    uint32_t _revents; // 当前连接触发的事件
    using EventCallback = std::function<void()>;
    EventCallback _read_callback;  // 可读事件被触发的回调函数
    EventCallback _write_callback; // 可写事件被触发的回调函数
    EventCallback _error_callback; // 错误事件被触发的回调函数
    EventCallback _close_callback; // 连接断开事件被触发的回调函数
    EventCallback _event_callback; // 任意事件被触发的回调函数
public:
    Channel(EventLoop *loop, int fd) : _fd(fd), _events(0), _revents(0), _loop(loop) {}
    int Fd() { return _fd; }
    uint32_t Events() { return _events; } // 获取想要监控的事件
    void SetREvents(uint32_t events) { _revents = events; }
    void SetReadCallback(const EventCallback &cb) { _read_callback = cb; } // 设置实际就绪的事件
    void SetWriteCallback(const EventCallback &cb) { _write_callback = cb; }
    void SetErrorCallback(const EventCallback &cb) { _error_callback = cb; }
    void SetCloseCallback(const EventCallback &cb) { _close_callback = cb; }
    void SetEventCallback(const EventCallback &cb) { _event_callback = cb; }
    // 当前是否监控了可读
    bool ReadAble() { return (_events & EPOLLIN); }
    // 当前是否监控了可写
    bool WriteAble() { return (_events & EPOLLOUT); }
    // 启动读事件监控
    void EnableRead()
    {
        _events |= EPOLLIN;
        Update();
    }
    // 启动写事件监控
    void EnableWrite()
    {
        _events |= EPOLLOUT;
        Update();
    }
    // 关闭读事件监控
    void DisableRead()
    {
        _events &= ~EPOLLIN;
        Update();
    }
    // 关闭写事件监控
    void DisableWrite()
    {
        _events &= ~EPOLLOUT;
        Update();
    }
    // 关闭所有事件监控
    void DisableAll()
    {
        _events = 0;
        Update();
    }
    // 移除监控
    void Remove(); // 声明和实现要分离,因为实现的时候是不知道里面有什么函数成员的
    void Update(); // 这两个特殊,所以把实现放在Poller类的下面进行实现
    // 事件处理,一旦触发了事件,就调用这个函数,自己触发了什么事件如何处理自己决定
    void HandleEvent()
    {
        // 第二参数,对方关闭连接,第三参数,带外数据
        if ((_revents & EPOLLIN) || (_revents & EPOLLRDHUP) || (_revents & EPOLLPRI))
        {
            if (_event_callback) // 不管任何事件,都调用的回调函数
                _event_callback();
            if (_read_callback)
                _read_callback();
        }
        /*有可能会释放连接的操作事件,一次只处理一个*/
        if (_revents & EPOLLOUT)
        {
            if (_event_callback)
                _event_callback(); // 放到事件处理完毕后调用,刷新活跃度
            if (_write_callback)
                _write_callback();
        }
        else if (_revents & EPOLLERR)
        {
            if (_event_callback)
                _event_callback();
            if (_error_callback)
                _error_callback();
        }
        else if (_revents & EPOLLHUP)
        {
            if (_event_callback)
                _event_callback();
            if (_close_callback)
                _close_callback();
        }
    }
};

// Poller描述符监控类
#define MAX_EPOLLEVENTS 1024
class Poller
{
private:
    int _epfd;
    struct epoll_event _evs[MAX_EPOLLEVENTS];
    std::unordered_map<int, Channel *> _channels;

private:
    // 对epoll的直接操作
    void Update(Channel *channel, int op)
    {
        // int epoll_ctl(int epfd, int op, int fd, struct epoll_event *ev)
        int fd = channel->Fd();
        struct epoll_event ev;
        ev.data.fd = fd;
        ev.events = channel->Events();
        int ret = epoll_ctl(_epfd, op, fd, &ev);
        if (ret < 0)
        {
            ERR_LOG("EPOLLCTL FAILED!");
        }
        return;
    }
    // 判断一个Channel 是否已经添加了事件监控
    bool HasChannel(Channel *channel)
    {
        auto it = _channels.find(channel->Fd());
        if (it == _channels.end())
        {
            return false;
        }
        return true;
    }

public:
    Poller()
    {
        _epfd = epoll_create(MAX_EPOLLEVENTS); // 这个值大于0就行了,无用处
        if (_epfd < 0)
        {
            ERR_LOG("EPOLL CREATE FAILED!");
            abort(); // 退出程序
        }
    }
    // 添加或修改监控事件
    void UpdateEvent(Channel *channel)
    {
        bool ret = HasChannel(channel);
        if (ret == false)
        {
            // 不存在则添加
            _channels.insert(std::make_pair(channel->Fd(), channel));
            return Update(channel, EPOLL_CTL_ADD);
        }
        return Update(channel, EPOLL_CTL_MOD);
    }
    // 移除监控
    void RemoveEvent(Channel *channel)
    {
        auto it = _channels.find(channel->Fd());
        if (it != _channels.end())
        {
            _channels.erase(it);
        }
        Update(channel, EPOLL_CTL_DEL);
    }
    // 开始监控, 返回活跃连接
    void Poll(std::vector<Channel *> *active)
    {
        // int epoll_wait(int epfd, struct epoll_event *evs, int maxevents, int timeout);
        int nfds = epoll_wait(_epfd, _evs, MAX_EPOLLEVENTS, -1); // -1阻塞监控
        if (nfds < 0)
        {
            if (errno == EINTR) // 信号打断
            {
                return;
            }
            ERR_LOG("EPOLL WAIT ERROR:%s\n", strerror(errno));
            abort();
        }
        for (int i = 0; i < nfds; i++) // 添加活跃信息
        {
            auto it = _channels.find(_evs[i].data.fd); // 没找到就说明不在我们的管理之下,这是不正常的
            assert(it != _channels.end());
            it->second->SetREvents(_evs[i].events); // 设置实际就绪的事件
            active->push_back(it->second);
        }
        return;
    }
};

// timerwheel时间轮定时器类
using TaskFunc = std::function<void()>;
using ReleaseFunc = std::function<void()>;
class TimerTask
{
private:
    uint64_t _id;         // 定时器任务对象
    uint32_t _timeout;    // 定时任务的超时时间
    bool _canceled;       // false-表示没有被取消,true-表示被取消
    TaskFunc _task_cb;    // 定时器要执行的定时任务
    ReleaseFunc _release; // 用于删除TimerWheel中保存的定时器对象信息
public:
    TimerTask(uint64_t id, uint32_t delay, const TaskFunc &cb) : _id(id), _timeout(delay), _task_cb(cb), _canceled(false) {}
    ~TimerTask()
    {
        if (_canceled == false)
            _task_cb();
        _release();
    }
    void Cancel() { _canceled = true; }
    void SetRelease(const ReleaseFunc &cb) { _release = cb; }
    uint32_t DelayTime() { return _timeout; } // 返回时间
};

class TimerWheel
{
private:
    using WeakTask = std::weak_ptr<TimerTask>;
    using PtrTask = std::shared_ptr<TimerTask>;
    int _tick;     // 当前的的秒针,走到哪里哪里就释放执行
    int _capacity; // 表盘最大数量 -- 其实就是最大延迟时间
    std::vector<std::vector<PtrTask>> _wheel;
    // 用weak_ptr来构造出新的shared_ptr用来计数,不过后续要记得释放
    std::unordered_map<uint64_t, WeakTask> _timers;

    EventLoop *_loop;
    int _timerfd; // 定时器描述符 -- 可读事件回调就是读取计数器,执行定时任务
    std::unique_ptr<Channel> _timer_channel;

private:
    void RemoveTimer(uint64_t id)
    {
        auto it = _timers.find(id);
        if (it != _timers.end())
        {
            _timers.erase(it);
        }
    }
    static int CreateTimerfd()
    {
        // int timerfd_create(int clockid, int flags);
        int timerfd = timerfd_create(CLOCK_MONOTONIC, 0);
        if (timerfd < 0)
        {
            ERR_LOG("TIMERFD CREATE FAILED!");
            abort();
        }
        // int timerfd_settime(int fd, int flags, struct itimerspec *new, struct itimerspec);
        struct itimerspec itime;
        itime.it_value.tv_sec = 1;                 // 设置 秒钟
        itime.it_value.tv_nsec = 0;                // 设置 纳秒 第一次超时时间为1s后
        itime.it_interval.tv_sec = 1;              // 同上
        itime.it_interval.tv_nsec = 0;             // 第一次超时后,每隔超时的间隔时
        timerfd_settime(timerfd, 0, &itime, NULL); // 0代表阻塞式
        return timerfd;
    }
    void ReadTimefd()
    {
        uint64_t times;
        int ret = read(_timerfd, &times, 8);
        if (ret < 0)
        {
            perror("READ TIMERFD FAILED!");
            abort();
        }
        return;
    }
    // 这个函数应该每秒钟被执行一次,相当于秒钟向后走了一步
    void RunTimerTask()
    {
        _tick = (_tick + 1) % _capacity;
        _wheel[_tick].clear(); // 清空指定位置的数组,就会把数组中保存的所有管理定时器对象的shared_ptr释放掉.从而执行函数
    }
    void OnTime()
    {
        ReadTimefd();
        RunTimerTask();
    }
    void TimerAddInLoop(uint64_t id, uint32_t delay, const TaskFunc &cb) // 添加定时任务
    {
        PtrTask pt(new TimerTask(id, delay, cb));                      // 实例化定时任务对象
        pt->SetRelease(std::bind(&TimerWheel::RemoveTimer, this, id)); // 第0个位置是隐藏的this指针。再把任务id绑定进去
        int pos = (_tick + delay) % _capacity;
        _wheel[pos].push_back(pt);
        _timers[id] = WeakTask(pt);
    }
    // 刷新/延迟定时任务
    void TimerRefreshInLoop(uint64_t id)
    {
        // 通过保存的定时器对象的weak_ptr构造一个shared_ptr出来, 添加到轮子中
        auto it = _timers.find(id);
        if (it == _timers.end())
        {
            return; // 没找到定时任务, 没法刷新,没法延迟
        }
        PtrTask pt = it->second.lock(); // lock获取weak_ptr管理的对象对应的shared_ptr
        int delay = pt->DelayTime();    // 获取到了初始的延迟时间
        int pos = (_tick + delay) % _capacity;
        _wheel[pos].push_back(pt);
    }
    void TimerCancelInLoop(uint64_t id)
    {
        auto it = _timers.find(id);
        if (it == _timers.end())
        {
            return; // 没找到定时任务, 没法刷新,没法延迟
        }
        PtrTask pt = it->second.lock(); // 当还没有过期才进行取消
        if (pt)
            pt->Cancel();
    }

public:
    TimerWheel(EventLoop *loop) : _capacity(60), _tick(0), _wheel(_capacity), _loop(loop),
                                  _timerfd(CreateTimerfd()), _timer_channel(new Channel(_loop, _timerfd))
    {
        _timer_channel->SetReadCallback(std::bind(&TimerWheel::OnTime, this));
        _timer_channel->EnableRead(); // 启动读事件监控
    }
    /*定时器中有个_timers成员,定时器信息的操作有可能在多线程中进行,因此需要考虑线程安全问题*/
    /*如果不想加锁,那就把对定期的所有操作,都放在一个线程中进行*/
    void TimerAdd(uint64_t id, uint32_t delay, const TaskFunc &cb);
    // 刷新/延迟定时任务
    void TimerRefresh(uint64_t id);
    void TimerCancel(uint64_t id);
    /*这个接口存在线程安全问题--这个接口实际上不能被外界使用者调用,只能在模块内,对应的EventLoop线程内执行*/
    bool HasTimer(uint64_t id)
    {
        auto it = _timers.find(id);
        if (it == _timers.end())
        {
            return false; // 没找到定时任务, 没法刷新,没法延迟
        }
        return true;
    }
};

// EventLoop事件监控处理类
class EventLoop
{
private:
    using Functor = std::function<void()>;
    std::thread::id _thread_id;              // 线程ID
    int _event_fd;                           // eventfd唤醒IO事件监控有可能导致的阻塞
    std::unique_ptr<Channel> _event_channel; // 智能指针
    Poller _poller;                          // 进行所有描述符的事件监控
    std::vector<Functor> _tasks;             // 任务池
    std::mutex _mutex;                       // 实现任务池操作的线程安全
    TimerWheel _timer_wheel;                 // 定时器模块
public:
    //  执行任务池中的所有任务
    void RunAllTask()
    {
        std::vector<Functor> functor;
        {
            std::unique_lock<std::mutex> _lock(_mutex);
            _tasks.swap(functor);
        }
        for (auto &f : functor)
        {
            f();
        }
        return;
    }
    static int CreateEventFd()
    {
        int efd = eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK);
        if (efd < 0)
        {
            ERR_LOG("CREATE EVENTFD FAILED!!");
            abort(); // 让程序异常退出
        }
        return efd;
    }
    void ReadEventfd()
    {
        uint64_t res = 0;
        int ret = read(_event_fd, &res, sizeof(res));
        if (ret < 0)
        {
            // EINTR -- 被信号打断, EAGAIN -- 表示无数据可读
            if (errno == EINTR || EAGAIN)
            {
                return;
            }
            ERR_LOG("READ EVENTFD FAILED!");
            abort();
        }
        return;
    }
    void WeakUpEventFd()
    {
        uint64_t val = 1;
        int ret = write(_event_fd, &val, sizeof(val));
        if (ret < 0)
        {
            if (errno == EINTR)
            {
                return;
            }
            ERR_LOG("READ EVENTFD FAILED!");
            abort();
        }
        return;
    }

public:
    EventLoop() : _thread_id(std::this_thread::get_id()),
                  _event_fd(CreateEventFd()),
                  _event_channel(new Channel(this, _event_fd)),
                  _timer_wheel(this)
    {
        // 给eventfd添加可读事件回调函数,读取eventfd事件通知次数
        _event_channel->SetReadCallback(std::bind(&EventLoop::ReadEventfd, this));
        // 启动eventfd的读事件监控
        _event_channel->EnableRead();
    }
    // 三步走--事件监控-》就绪事件处理-》执行任务
    void Start()
    {
        // 1.事件监控
        std::vector<Channel *> actives;
        _poller.Poll(&actives);
        // 2.事件处理
        for (auto &channel : actives)
        {
            channel->HandleEvent();
        }
        // 3.执行任务
        RunAllTask();
    }
    // 用于判断当前线程是否是EventLoop对应的线程
    bool IsInLoop()
    {
        return (_thread_id == std::this_thread::get_id());
    }
    void AssertInLoop()
    {
        assert(_thread_id == std::this_thread::get_id());
    }
    // 判断将要执行的任务是否处于当前线程中,如果是则执行,否则压入队列
    void RunInLoop(const Functor &cb)
    {
        if (IsInLoop())
        {
            return cb();
        }
        return QueueInLoop(cb);
    }
    // 将操作压入任务池
    void QueueInLoop(const Functor &cb)
    {
        {
            std::unique_lock<std::mutex> _lock(_mutex);
            _tasks.push_back(cb);
        }
        // 唤醒有可能因为没有事件就绪,而导致的epoll阻塞
        // 其实就是给eventfd写入一个数据,eventfd就会触发可读事件
        WeakUpEventFd();
    }
    // 添加/修改描述符的事件监控
    void UpdateEvent(Channel *channel) { return _poller.UpdateEvent(channel); }
    // 移除描述符的监控
    void RemoveEvent(Channel *channel) { return _poller.RemoveEvent(channel); }
    void TimerAdd(uint64_t id, uint32_t delay, const TaskFunc &cb) { return _timer_wheel.TimerAdd(id, delay, cb); }
    void TimerRefresh(uint64_t id) { return _timer_wheel.TimerRefresh(id); }
    void TimerCancel(uint64_t id) { return _timer_wheel.TimerCancel(id); }
    bool HasTimer(uint64_t id) { return _timer_wheel.HasTimer(id); }
};

class Any
{
private:
    class holder
    {
    public:
        virtual ~holder() {}
        virtual const std::type_info &type() = 0;
        virtual holder *clone() = 0;
    };
    template <class T>
    class placeholder : public holder
    {
    public:
        placeholder(const T &val) : _val(val) {}
        // 获取子类对象保存的数据类型
        virtual const std::type_info &type() { return typeid(T); }
        // 针对当前的对象自身,克隆出一个新的子类对象
        virtual holder *clone() { return new placeholder(_val); }
        // 析构用数据自身的就行了
    public:
        T _val;
    };
    holder *_content;

public:
    Any() : _content(nullptr) {}
    template <class T>
    Any(const T &val) : _content(new placeholder<T>(val)) {}
    Any(const Any &other) : _content(other._content ? other._content->clone() : nullptr) {}
    ~Any() { delete _content; }

    Any &swap(Any &other)
    {
        std::swap(_content, other._content);
        return *this;
    }

    // 返回子类对象保存的数据的指针
    template <class T>
    T *get()
    {
        // 想要获取的数据类型,必须和保存的数据类型一致
        assert(typeid(T) == _content->type());
        return &((placeholder<T> *)_content)->_val;
    }
    // 赋值运算符的重载函数
    template <class T>
    Any &operator=(const T &val)
    {
        // 为val构造一个临时的通用容器,然后与当前容器自身进行指针交换,临时对象释放的时候,原先保存的数据也就被释放了
        Any(val).swap(*this);
        return *this;
    }
    Any &operator=(const Any &other)
    {
        Any(other).swap(*this);
        return *this;
    }
};

class Connection;
// DISCONNECTED -- 连接关闭状态  CONNECTING -- 连接建立成功-待处理状态
// CONNECTED -- 连接建立完成,各种设置已完成,可以通信状态    DISCONNECTING -- 待关闭状态
typedef enum
{
    DISCONNECTED,
    CONNECTING,
    CONNECTED,
    DISCONNECTING
} ConnStatu;
using PtrConnection = std::shared_ptr<Connection>;
class Connection : public std::enable_shared_from_this<Connection>
{
private:
    uint64_t _conn_id; // 连接的唯一ID,便于连接的管理和查找
    // uint64_t _timer_id; // 定时器ID,必须是唯一的,这块是为了简化操作使用conn_id作为定时器
    int _sockfd;                   // 连接关联的文件描述符
    bool _enable_inactive_release; // 连接是否启动非活跃的判断标志,默认为false
    EventLoop *_loop;              // 连接所关联的一个EventLoop
    ConnStatu _statu;              // 连接状态
    Socket _socket;                // 套接字操作管理
    Channel _channel;              // 连接的事件管理
    Buffer _in_buffer;             // 输入缓冲区--存放从socket中读取到的数据
    Buffer _out_buffer;            // 输出缓冲区--存放要发送给对端的数据
    Any _context;                  // 请求的接收处理上下文

    /*这四个回调函数,是让服务器模块来设置的(其实服务器模块的处理回调也是组件使用者设置的)*/
    /*换句话来说,这几个回调都是组件使用者使用的*/
    using ConnectedCallback = std::function<void(const PtrConnection &)>;
    using MessageCallback = std::function<void(const PtrConnection &, Buffer *)>;
    using ClosedCallback = std::function<void(const PtrConnection &)>;
    using AnyEventCallback = std::function<void(const PtrConnection &)>;
    ConnectedCallback _connected_callback;
    MessageCallback _message_callback;
    ClosedCallback _closed_callback;
    AnyEventCallback _event_callback;
    /*组件内的连接关闭回调--组件内设置的,因为服务器组件内会把所有的连接管理起来,一旦某个连接要关闭*/
    /*就应该从管理的地方移除掉自己的信息*/
    ClosedCallback _server_closed_callback;

private:
    /*五个channel的事件回调函数*/
    // 描述符可读事件触发后调用的函数,接收socket数据放到接收缓冲区中,然后调用_message_callback
    void HandleRead()
    {
        // 1.接收socket的数据,放到缓冲区
        char buf[65536];
        ssize_t ret = _socket.NonBlockRecv(buf, 65536);
        if (ret < 0)
        {
            // 出错了,不能直接关闭连接
            return ShutdownInLoop();
        }
        // 这里的等于0表示的是没有读取到数据,而并不是连接断开了,连接断开返回的是-1
        // 将数据放入输入缓冲区,写入之后顺便将写偏移向后移动
        _in_buffer.WriteAndPush(buf, ret);
        // 2.调用message_callback进行业务处理
        if (_in_buffer.ReadAbleSize() > 0)
        {
            // shard_from_this--从当前对象自身获取自身的shared_ptr管理对象
            return _message_callback(shared_from_this(), &_in_buffer);
        }
    }
    // 描述符可写事件触发后调用的函数,将发送缓冲区中的数据进行发送
    void HandleWrite()
    {
        // _out_buffer中保存的就是要发送的数据
        ssize_t ret = _socket.NonBlockSend(_out_buffer.ReadPosition(), _out_buffer.ReadAbleSize());
        if (ret < 0)
        {
            // 发送错误就应该关闭连接了
            if (_in_buffer.ReadAbleSize() > 0)
            {
                _message_callback(shared_from_this(), &_in_buffer);
            }
        }
        _out_buffer.MoveReadOffset(ret); // 千万不要忘了,将读偏移向后移动
        if (_out_buffer.ReadAbleSize() == 0)
        {
            _channel.DisableWrite(); // 没有数据待发送,关闭写事件监控
            // 如果当前是连接待关闭状态,则有数据,发送完数据释放连接,没有数据则直接释放
            if (_statu == DISCONNECTING)
            {
                return ReleaseInLoop(); // 这时候就是实际的关闭释放操作了
            }
        }
        return;
    }
    // 描述符触发挂断事件
    void HandleClose()
    {
        /*一旦连接挂断了,套接字就什么都干不了了,因此有数据待处理就处理一下,完毕关闭连接*/
        if (_in_buffer.ReadAbleSize() > 0)
        {
            _message_callback(shared_from_this(), &_in_buffer);
        }
        return ReleaseInLoop();
    }
    // 描述符触发出错事件
    void HandleError()
    {
        return HandleClose();
    }
    // 描述符触发任意事件: 1.刷新连接活跃度--延迟定时销毁任务 2.调用组件使用者的任意事件回调
    void HandleEvent()
    {
        if (_enable_inactive_release == true)
        {
            _loop->TimerRefresh(_conn_id);
        }
        if (_event_callback)
        {
            _event_callback(shared_from_this());
        }
    }
    // 连接获取之后,所处的状态要进行各种设置(给channel设置事件回调,启动读监控,调用回调函数)
    void EstablishedInLoop()
    {
        // 1.修改连接状态   2.启动读事件监控    3.调用回调函数
        assert(_statu == CONNECTING); // 当前状态必须一定是上层的半连接状态
        _statu = CONNECTED;           // 当前函数执行完毕,则连接进入已完成连接状态
        // 一旦启动读事件监控就有可能会立即触发读事件,如果这时候启动了非活跃连接销毁
        _channel.EnableRead();
        if (_connected_callback)
            _connected_callback(shared_from_this());
    }
    // 这个接口才是实际的释放接口
    void ReleaseInLoop()
    {
        // 1.修改连接状态,将其置为DISCONNECTED
        _statu = DISCONNECTED;
        // 2.移除连接的事件监控
        _channel.Remove();
        // 3.关闭描述符
        _socket.Close();
        // 4.如果当前定时器队列中还有定时销毁任务,则取消任务
        if (_loop->HasTimer(_conn_id))
            CancelInactiveReleaseInLoop();
        // 5.调用关闭回调函数,避免先移除服务器管理的连接信息导致Connection被释放,再去处理会出错,因此先调用用户的回调函数
        if (_closed_callback)
            _closed_callback(shared_from_this());
        // 移除服务器内部管理的连接信息
        if (_server_closed_callback)
            _server_closed_callback(shared_from_this());
    }
    // 这个并不是实际的发送接口,而只是把数据放到了发送缓冲区,启动了可写事件监控
    void SendInLoop(Buffer buf)
    {
        if (_statu == DISCONNECTED)
            return;
        _out_buffer.WriteBufferAndPush(buf);    // 可以在这个函数后面加上const表示不修改this
        if (_channel.WriteAble() == false)
        {
            _channel.EnableWrite();
        }
    }
    // 这个关闭操作并非实际的连接释放操作,需要判断还有没有数据待处理,待发送
    void ShutdownInLoop()
    {
        _statu = DISCONNECTING; // 设置连接为半关闭状态
        if (_in_buffer.ReadAbleSize() > 0)
        {
            if (_message_callback)
                _message_callback(shared_from_this(), &_in_buffer);
        }
        // 要么就是写入数据的时候出错关闭,要么就是没有待发送数据,直接关闭
        if (_out_buffer.ReadAbleSize() > 0)
        {
            if (_channel.WriteAble() == false)
            {
                _channel.EnableWrite();
            }
        }
        if (_out_buffer.ReadAbleSize() == 0)
        {
            ReleaseInLoop();
        }
    }
    // 启动非活跃连接超时释放规则
    void EnableInactiveReleaseInLoop(int sec)
    {
        // 1.将判断标志 _enable_inactive_release 置为true
        _enable_inactive_release = true;
        // 2.如果当前定时销毁任务已经存在,那就刷新一下延迟即可
        if (_loop->HasTimer(_conn_id))
        {
            return _loop->TimerRefresh(_conn_id);
        }
        // 3.如果不存在定时销毁任务,则新增
        _loop->TimerAdd(_conn_id, sec, std::bind(&Connection::ReleaseInLoop, this));
    }
    void CancelInactiveReleaseInLoop()
    {
        _enable_inactive_release = false;
        if (_loop->HasTimer(_conn_id))
        {
            _loop->TimerCancel(_conn_id);
        }
    }
    void UpgradeInLoop(const Any &context,
                       const ConnectedCallback &conn,
                       const MessageCallback &msg,
                       const ClosedCallback &closed,
                       const AnyEventCallback &event)
    {
        _context = context;
        _connected_callback = conn;
        _message_callback = msg;
        _closed_callback = closed;
        _event_callback = event;
    }

public:
    Connection(EventLoop *loop, uint64_t conn_id, int sockfd) : _conn_id(conn_id), _sockfd(sockfd),
                                                                _enable_inactive_release(false), _loop(loop), _statu(CONNECTING), _socket(_sockfd),
                                                                _channel(loop, _sockfd)
    {
        _channel.SetCloseCallback(std::bind(&Connection::HandleClose, this));
        _channel.SetEventCallback(std::bind(&Connection::HandleEvent, this));
        _channel.SetReadCallback(std::bind(&Connection::HandleRead, this));
        _channel.SetWriteCallback(std::bind(&Connection::HandleWrite, this));
        _channel.SetErrorCallback(std::bind(&Connection::HandleError, this));
    }
    ~Connection() { DBG_LOG("RELEASE CONNECTION:%p", this); }
    // 获取管理的文件描述符
    int Fd() { return _sockfd; }
    // 获取连接ID
    int Id() { return _conn_id; }
    // 是否处于CONNECTED状态
    bool Connected() { return (_statu == CONNECTED); }
    // 设置上下文--连接建立完成时进行调用
    void SetContext(const Any &context) { _context = context; }
    // 获取上下文,返回的是指针
    Any *GetContext() { return &_context; }
    void SetConnectedCallback(const ConnectedCallback &cb) { _connected_callback = cb; }
    void SetMessageCallback(const MessageCallback &cb) { _message_callback = cb; }
    void SetClosedCallback(const ClosedCallback &cb) { _closed_callback = cb; }
    void SetAnyEventCallback(const AnyEventCallback &cb) { _event_callback = cb; }
    void SetSrvClosedCallback(const ClosedCallback &cb) { _server_closed_callback = cb; }
    // 连接建立就绪后,进行channel回调设置,启动读监控,调用_connect_callback
    void Established()
    {
        _loop->RunInLoop(std::bind(&Connection::EstablishedInLoop, this));
    }
    // 发送数据,将数据发送到发送缓冲区,启动写事件监控
    void Send(const char *data, size_t len)
    {
        // 外界传入的data,可能是个临时空间,我们现在只是把发送操作压入了任务池,有可能并没有被执行
        // 因此有可能执行的时候,data指向的空间有可能已经被释放了
        Buffer buf;
        buf.WriteAndPush(data, len);
        _loop->RunInLoop(std::bind(&Connection::SendInLoop, this, buf));
    }
    // 提供给组件使用者的关闭接口--并不实际关闭,需要判断有没有数据待处理
    void Shutdown()
    {
        _loop->RunInLoop(std::bind(&Connection::ShutdownInLoop, this));
    }
    // 启动非活跃销毁,并定义多长时间无通信就是非活跃,添加定时任务
    void EnableInactiveRelease(int sec)
    {
        _loop->RunInLoop(std::bind(&Connection::EnableInactiveReleaseInLoop, this, sec));
    }
    // 取消非活跃销毁
    void CancelInactiveRelease()
    {
        _loop->RunInLoop(std::bind(&Connection::CancelInactiveReleaseInLoop, this));
    }
    // 切换协议--重置上下文以及阶段性处理函数--而是这个接口必须在EventLoop线程中立即执行
    // 防备新的事件触发后,处理的时候,切换任务还没有被执行--会导致数据使用原协议处理了
    void Upgrade(const Any &context, const ConnectedCallback &conn, const MessageCallback &msg,
                 const ClosedCallback &closed, const AnyEventCallback &event)
    {
        _loop->AssertInLoop();
        _loop->RunInLoop(std::bind(&Connection::UpgradeInLoop, this, context, conn, msg, closed, event));
    }
};

// 移除监控
void Channel::Remove() { return _loop->RemoveEvent(this); }
void Channel::Update() { return _loop->UpdateEvent(this); }
void TimerWheel::TimerAdd(uint64_t id, uint32_t delay, const TaskFunc &cb)
{
    _loop->RunInLoop(std::bind(&TimerWheel::TimerAddInLoop, this, id, delay, cb));
}
void TimerWheel::TimerRefresh(uint64_t id)
{
    _loop->RunInLoop(std::bind(&TimerWheel::TimerRefreshInLoop, this, id));
}
void TimerWheel::TimerCancel(uint64_t id)
{
    _loop->RunInLoop(std::bind(&TimerWheel::TimerCancelInLoop, this, id));
}

测试结果

测试1链接自动销毁

客户端

服务端 

测试2链接手动销毁

客户端

服务端

符合预期


原文地址:https://blog.csdn.net/weixin_67595436/article/details/136309274

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!