自学内容网 自学内容网

开源模型应用落地-Qwen2.5-7B-Instruct与vllm实现离线推理-降本增效(一)

一、前言

    离线推理能够在模型训练完成后,特别是在处理大规模数据时,利用预先准备好的输入数据进行批量推理,从而显著提高计算效率和响应速度。通过离线推理,可以在不依赖实时计算的情况下,快速生成预测结果,从而优化决策流程和提升用户体验。此外,离线推理还可以降低云计算成本,允许在资源使用高效的时间段进行计算,进一步提高经济效益。

    在本篇中,将学习如何将Qwen2.5-7B-Instruct模型与vLLM框架进行有效整合,通过离线推理为实际项目带来更大的价值。


二、术语

2.1. vLLM

    vLLM是一个开源的大模型推理加速框架,通过PagedAttention高效地管理attention中缓存的张量,实现了比HuggingFace Transformers高14-24倍的吞吐量。

2.1. Qwen2.5

    Qwen2.5系列模型都在最新的大规模数据集上进行了预训练,该数据集包含多达 18T tokens。相较于 Qwen2,Qw


原文地址:https://blog.csdn.net/qq839019311/article/details/142957247

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!