自学内容网 自学内容网

PyTorch使用------自动微分模块

5b48cb01f659435cbe69ea1eb0f43faa.jpeg

目录

 

🍔 梯度基本计算

1.1 单标量梯度的计算

1.2 单向量梯度的计算

1.3 多标量梯度计算

1.4 多向量梯度计算

1.5 运行结果💯

🍔 控制梯度计算

2.1 控制不计算梯度

2.2 注意: 累计梯度

2.3 梯度下降优化最优解

2.4 运行结果💯

🍔 梯度计算注意

3.1 detach 函数用法

3.2 detach 前后张量共享内存

3.3 运行结果💯

🍔 小节


 

学习目标

🍀 掌握梯度计算


自动微分(Autograd)模块对张量做了进一步的封装,具有自动求导功能。自动微分模块是构成神经网络训练的必要模块,在神经网络的反向传播过程中,Autograd 模块基于正向计算的结果对当前的参数进行微分计算,从而实现网络权重参数的更新。

🍔 梯度基本计算

我们使用 backward 方法、grad 属性来实现梯度的计算和访问.

import torch

1.1 单标量梯度的计算

   

 # y = x**2 + 20
    def test01():

    # 定义需要求导的张量
    # 张量的值类型必须是浮点类型
    x = torch.tensor(10, requires_grad=True, dtype=torch.float64)
    # 变量经过中间运算
    f = x ** 2 + 20
    # 自动微分
    f.backward()
    # 打印 x 变量的梯度
    # backward 函数计算的梯度值会存储在张量的 grad 变量中
    print(x.grad)


1.2 单向量梯度的计算

# y = x**2 + 20
def test02():

    # 定义需要求导张量
    x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)
    # 变量经过中间计算
    f1 = x ** 2 + 20

    # 注意:
    # 由于求导的结果必须是标量
    # 而 f 的结果是: tensor([120., 420.])
    # 所以, 不能直接自动微分
    # 需要将结果计算为标量才能进行计算
    f2 = f1.mean()  # f2 = 1/2 * x

    # 自动微分
    f2.backward()

    # 打印 x 变量的梯度
    print(x.grad)

1.3 多标量梯度计算

# y = x1 ** 2 + x2 ** 2 + x1*x2
def test03():

    # 定义需要计算梯度的张量
    x1 = torch.tensor(10, requires_grad=True, dtype=torch.float64)
    x2 = torch.tensor(20, requires_grad=True, dtype=torch.float64)

    # 经过中间的计算
    y = x1**2 + x2**2 + x1*x2

    # 将输出结果变为标量
    y = y.sum()

    # 自动微分
    y.backward()

    # 打印两个变量的梯度
    print(x1.grad, x2.grad)


1.4 多向量梯度计算

def test04():

    # 定义需要计算梯度的张量
    x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)
    x2 = torch.tensor([30, 40], requires_grad=True, dtype=torch.float64)

    # 经过中间的计算
    y = x1 ** 2 + x2 ** 2 + x1 * x2
    print(y)

    # 将输出结果变为标量
    y = y.sum()

    # 自动微分
    y.backward()

    # 打印两个变量的梯度
    print(x1.grad, x2.grad)


if __name__ == '__main__':
    test04()

1.5 运行结果💯

tensor(20., dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor(40., dtype=torch.float64) tensor(50., dtype=torch.float64)
tensor([1300., 2800.], dtype=torch.float64, grad_fn=<AddBackward0>)
tensor([50., 80.], dtype=torch.float64) tensor([ 70., 100.], dtype=torch.float64)

🍔 控制梯度计算

我们可以通过一些方法使得在 requires_grad=True 的张量在某些时候计算不进行梯度计算。

import torch

2.1 控制不计算梯度

def test01():

    x = torch.tensor(10, requires_grad=True, dtype=torch.float64)
    print(x.requires_grad)

    # 第一种方式: 对代码进行装饰
    with torch.no_grad():
        y = x ** 2
    print(y.requires_grad)

    # 第二种方式: 对函数进行装饰
    @torch.no_grad()
    def my_func(x):
        return x ** 2
    print(my_func(x).requires_grad)


    # 第三种方式
    torch.set_grad_enabled(False)
    y = x ** 2
    print(y.requires_grad)


2.2 注意: 累计梯度

def test02():

    # 定义需要求导张量
    x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)

    for _ in range(3):

        f1 = x ** 2 + 20
        f2 = f1.mean()

        # 默认张量的 grad 属性会累计历史梯度值
        # 所以, 需要我们每次手动清理上次的梯度
        # 注意: 一开始梯度不存在, 需要做判断
        if x.grad is not None:
            x.grad.data.zero_()

        f2.backward()
        print(x.grad)


2.3 梯度下降优化最优解

def test03():

    # y = x**2
    x = torch.tensor(10, requires_grad=True, dtype=torch.float64)

    for _ in range(5000):

        # 正向计算
        f = x ** 2

        # 梯度清零
        if x.grad is not None:
            x.grad.data.zero_()

        # 反向传播计算梯度
        f.backward()

        # 更新参数
        x.data = x.data - 0.001 * x.grad

        print('%.10f' % x.data)


if __name__ == '__main__':
    test01()
    test02()
    test03()

2.4 运行结果💯

True
False
False
False
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)

🍔 梯度计算注意

当对设置 requires_grad=True 的张量使用 numpy 函数进行转换时, 会出现如下报错:

Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

此时, 需要先使用 detach 函数将张量进行分离, 再使用 numpy 函数.

注意: detach 之后会产生一个新的张量, 新的张量作为叶子结点,并且该张量和原来的张量共享数据, 但是分离后的张量不需要计算梯度。

import torch

3.1 detach 函数用法

def test01():

    x = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)

    # Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.
    # print(x.numpy())  # 错误
    print(x.detach().numpy())  # 正确


3.2 detach 前后张量共享内存

def test02():

    x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)

    # x2 作为叶子结点
    x2 = x1.detach()

    # 两个张量的值一样: 140421811165776 140421811165776
    print(id(x1.data), id(x2.data))
    x2.data = torch.tensor([100, 200])
    print(x1)
    print(x2)

    # x2 不会自动计算梯度: False
    print(x2.requires_grad)


if __name__ == '__main__':
    test01()
    test02()

3.3 运行结果💯

10. 20.]
140495634222288 140495634222288
tensor([10., 20.], dtype=torch.float64, requires_grad=True)
tensor([100, 200])
False

🍔 小节

本小节主要讲解了 PyTorch 中非常重要的自动微分模块的使用和理解。我们对需要计算梯度的张量需要设置 requires_grad=True 属性,并且需要注意的是梯度是累计的,在每次计算梯度前需要先进行梯度清零。

 54b39e35553446379cc448d7586a957b.jpeg

😀 小言在此感谢大家的支持😀 

顺便问一下大佬们,最擅长使用的编程语言是什么呢~

欢迎评论区讨论哦~

 

 

 


原文地址:https://blog.csdn.net/2301_76820214/article/details/142388712

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!