pytorch使用技巧
pytorch使用技巧
1. 指定GPU编号
设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
设置当前使用的GPU设备为0, 1号两个设备,名称依次为 /gpu:0
、/gpu:1
: os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
,根据顺序表示优先使用0号设备,然后使用1号设备。
2. 查看模型每层输出详情
Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。
from torchsummary import summary
summary(your_model, input_size=(channels, H, W))
input_size
是根据你自己的网络模型的输入尺寸进行设置。
https://github.com/sksq96/pytorch-summary
3. 梯度裁剪(Gradient Clipping)
import torch.nn as nn
outputs = model(data)
loss= loss_fn(outputs, target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()
nn.utils.clip_grad_norm_
的参数:
-
parameters – 一个基于变量的迭代器,会进行梯度归一化
-
max_norm – 梯度的最大范数
-
norm_type – 规定范数的类型,默认为L2
4. 扩展单张图片维度
因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:
import cv2
import torch
image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())
img = image.view(1, *image.size())
print(img.size())
# output:
# torch.Size([h, w, c])
# torch.Size([1, h, w, c])
或
import cv2
import numpy as np
image = cv2.imread(img_path)
print(image.shape)
img = image[np.newaxis, :, :, :]
print(img.shape)
# output:
# (h, w, c)
# (1, h, w, c)
import cv2
import torch
image = cv2.imread(img_path)
image = torch.tensor(image)
print(image.size())
img = image.unsqueeze(dim=0)
print(img.size())
img = img.squeeze(dim=0)
print(img.size())
# output:
# torch.Size([(h, w, c)])
# torch.Size([1, h, w, c])
# torch.Size([h, w, c])
tensor.unsqueeze(dim)
:扩展维度,dim指定扩展哪个维度。
tensor.squeeze(dim)
:去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。
5. 独热编码
在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。
import torch
class_num = 8
batch_size = 4
def one_hot(label):
"""
将一维列表转换为独热编码
"""
label = label.resize_(batch_size, 1)
m_zeros = torch.zeros(batch_size, class_num)
# 从 value 中取值,然后根据 dim 和 index 给相应位置赋值
onehot = m_zeros.scatter_(1, label, 1) # (dim,index,value)
return onehot.numpy() # Tensor -> Numpy
label = torch.LongTensor(batch_size).random_() % class_num # 对随机数取余
print(one_hot(label))
# output:
[[0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0.]]
6. 防止验证模型时爆显存
验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。
with torch.no_grad():
# 使用model进行预测的代码
pass
意思就是PyTorch的缓存分配器会事先分配一些固定的显存,即使实际上tensors并没有使用完这些显存,这些显存也不能被其他应用使用。这个分配过程由第一次CUDA内存访问触发的。
而 torch.cuda.empty_cache()
的作用就是释放缓存分配器当前持有的且未占用的缓存显存,以便这些显存可以被其他GPU应用程序中使用,并且通过 nvidia-smi
命令可见。注意使用此命令不会释放tensors占用的显存。
对于不用的数据变量,Pytorch 可以自动进行回收从而释放相应的显存。
7. 学习率衰减
import torch.optim as optim
from torch.optim import lr_scheduler
# 训练前的初始化
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1) # # 每过10个epoch,学习率乘以0.1
# 训练过程中
for n in n_epoch:
scheduler.step()
...
8. 冻结某些层的参数
参考:Pytorch 冻结预训练模型的某一层
https://www.zhihu.com/question/311095447/answer/589307812
在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。
我们需要先知道每一层的名字,通过如下代码打印:
net = Network() # 获取自定义网络结构
for name, value in net.named_parameters():
print('name: {0},\t grad: {1}'.format(name, value.requires_grad))
name: cnn.VGG_16.convolution1_1.weight, grad: True
name: cnn.VGG_16.convolution1_1.bias, grad: True
name: cnn.VGG_16.convolution1_2.weight, grad: True
name: cnn.VGG_16.convolution1_2.bias, grad: True
name: cnn.VGG_16.convolution2_1.weight, grad: True
name: cnn.VGG_16.convolution2_1.bias, grad: True
name: cnn.VGG_16.convolution2_2.weight, grad: True
name: cnn.VGG_16.convolution2_2.bias, grad: True
后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:
no_grad = [
'cnn.VGG_16.convolution1_1.weight',
'cnn.VGG_16.convolution1_1.bias',
'cnn.VGG_16.convolution1_2.weight',
'cnn.VGG_16.convolution1_2.bias'
]
net = Net.CTPN() # 获取网络结构
for name, value in net.named_parameters():
if name in no_grad:
value.requires_grad = False
else:
value.requires_grad = True
name: cnn.VGG_16.convolution1_1.weight, grad: False
name: cnn.VGG_16.convolution1_1.bias, grad: False
name: cnn.VGG_16.convolution1_2.weight, grad: False
name: cnn.VGG_16.convolution1_2.bias, grad: False
name: cnn.VGG_16.convolution2_1.weight, grad: True
name: cnn.VGG_16.convolution2_1.bias, grad: True
name: cnn.VGG_16.convolution2_2.weight, grad: True
name: cnn.VGG_16.convolution2_2.bias, grad: True
可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。
最后在定义优化器时,只对requires_grad为True的层的参数进行更新。
optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)
9. 对不同层使用不同学习率
net = Network() # 获取自定义网络结构
for name, value in net.named_parameters():
print('name: {}'.format(name))
# 输出:
# name: cnn.VGG_16.convolution1_1.weight
# name: cnn.VGG_16.convolution1_1.bias
# name: cnn.VGG_16.convolution1_2.weight
# name: cnn.VGG_16.convolution1_2.bias
# name: cnn.VGG_16.convolution2_1.weight
# name: cnn.VGG_16.convolution2_1.bias
# name: cnn.VGG_16.convolution2_2.weight
# name: cnn.VGG_16.convolution2_2.bias
对 convolution1 和 convolution2 设置不同的学习率,首先将它们分开,即放到不同的列表里:
conv1_params = []
conv2_params = []
for name, parms in net.named_parameters():
if "convolution1" in name:
conv1_params += [parms]
else:
conv2_params += [parms]
# 然后在优化器中进行如下操作:
optimizer = optim.Adam(
[
{"params": conv1_params, 'lr': 0.01},
{"params": conv2_params, 'lr': 0.001},
],
weight_decay=1e-3,
)
我们将模型划分为两部分,存放到一个列表里,每部分就对应上面的一个字典,在字典里设置不同的学习率。当这两部分有相同的其他参数时,就将该参数放到列表外面作为全局参数,如上面的`weight_decay`。
也可以在列表外设置一个全局学习率,当各部分字典里设置了局部学习率时,就使用该学习率,否则就使用列表外的全局学习率。
原文地址:https://blog.csdn.net/m0_73776435/article/details/142199691
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!