自学内容网 自学内容网

使用 PyTorch 构建 LSTM 股票价格预测模型

引言

在金融领域,股票价格预测是一个重要且具有挑战性的任务。随着深度学习的发展,长短期记忆网络(LSTM)因其在处理时间序列数据方面的出色表现而受到关注。本篇博客将指导你如何使用PyTorch构建一个LSTM模型来预测股票价格,我们将逐步介绍数据预处理、模型训练和结果可视化的完整流程。

准备工作

  1. 安装依赖
    确保你已经安装了以下 Python 库:

    pip install pandas numpy torch matplotlib scikit-learn
    
  2. 下载数据
    使用 yfinance 库下载你感兴趣的股票的历史数据,并保存为 CSV 文件。我们这里使用 Apple(AAPL)过去五年的数据,文件命名为 AAPL_5y_data.csv。以下是一个下载数据的代码示例:

    import yfinance as yf
    
    # 下载Apple股票过去5年的数据
    data = yf.download('AAPL', start='2019-01-01', end='2024-01-01')
    data.to_csv('AAPL_5y_data.csv')
    

1. 训练模型(train.py

在这个脚本中,我们将读取 CSV 文件,归一化数据,并使用 LSTM 模型进行训练。

import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from model import LSTM  # 导入LSTM类

# 设置随机种子
torch.manual_seed(42)

# 读取CSV文件
file_path = 'AAPL_5y_data.csv'  # 替换为你的CSV文件路径
data = pd.read_csv(file_path)

# 确保日期列是 datetime 类型
data['Date'] = pd.to_datetime(data['Date'])
data.set_index('Date', inplace=True)

# 选择多特征:'Close', 'Open', 'High', 'Low', 'Volume'
features = data[['Close', 'Open', 'High', 'Low', 'Volume']].values

# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(features)

# 准备训练和测试数据
train_size = int(len(scaled_data) * 0.8)
train_data = scaled_data[:train_size]
test_data = scaled_data[train_size:]

def create_dataset(data, time_step=1):
    X, y = [], []
    for i in range(len(data) - time_step - 1):
        a = data[i:(i + time_step)]
        X.append(a)
        y.append(data[i + time_step, 0])  # 预测收盘价
    return np.array(X), np.array(y)

# 创建数据集
time_step = 50  # 时间步长
X_train, y_train = create_dataset(train_data, time_step)

# 转换为PyTorch张量
X_train = torch.from_numpy(X_train).float()
y_train = torch.from_numpy(y_train).float().view(-1, 1)

# 初始化模型、损失函数和优化器
model = LSTM()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

# 训练模型
num_epochs = 300
for epoch in range(num_epochs):
    model.train()
    optimizer.zero_grad()
    outputs = model(X_train)
    loss = criterion(outputs, y_train)
    loss.backward()
    optimizer.step()
    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

# 保存模型
torch.save(model.state_dict(), 'lstm_model.pth')
print("模型已保存为 'lstm_model.pth'")

2. 模型定义(model.py

在这个文件中定义 LSTM 模型结构。

import torch
import torch.nn as nn

class LSTM(nn.Module):
    def __init__(self):
        super(LSTM, self).__init__()
        self.lstm = nn.LSTM(input_size=5, hidden_size=100, num_layers=2, batch_first=True)
        self.fc = nn.Linear(100, 1)

    def forward(self, x):
        out, _ = self.lstm(x)
        out = self.fc(out[:, -1, :])  # 取最后时间步的输出
        return out

3. 测试模型和可视化(test.py

在这个脚本中,我们将加载训练好的模型,并使用测试数据进行预测和可视化。

import pandas as pd
import numpy as np
import torch
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from model import LSTM  # 导入LSTM类

# 设置字体为SimHei,用于显示中文
plt.rcParams['font.family'] = 'SimHei'

# 读取CSV文件
file_path = 'AAPL_5y_data.csv'  # 替换为你的CSV文件路径
data = pd.read_csv(file_path)

# 确保日期列是 datetime 类型
data['Date'] = pd.to_datetime(data['Date'])
data.set_index('Date', inplace=True)

# 选择多特征:'Close', 'Open', 'High', 'Low', 'Volume'
features = data[['Close', 'Open', 'High', 'Low', 'Volume']].values

# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(features)

# 准备训练和测试数据
train_size = int(len(scaled_data) * 0.8)
train_data = scaled_data[:train_size]
test_data = scaled_data[train_size:]

def create_dataset(data, time_step=1):
    X, y = [], []
    for i in range(len(data) - time_step - 1):
        a = data[i:(i + time_step)]
        X.append(a)
        y.append(data[i + time_step, 0])  # 预测收盘价
    return np.array(X), np.array(y)

# 创建测试数据集
time_step = 50  # 时间步长
X_test, y_test = create_dataset(test_data, time_step)

# 转换为PyTorch张量
X_test = torch.from_numpy(X_test).float()
y_test = torch.from_numpy(y_test).float().view(-1, 1)

# 加载模型
model = LSTM()
model.load_state_dict(torch.load('lstm_model.pth'))
model.eval()

# 测试模型
with torch.no_grad():
    test_outputs = model(X_test)
    # test_outputs 是预测的收盘价,将其重新归一化为原始价格
    test_outputs = scaler.inverse_transform(np.concatenate((test_outputs.numpy(), np.zeros((test_outputs.shape[0], 4))), axis=1))[:, 0]  # 反归一化收盘价
    y_test_inverse = scaler.inverse_transform(np.concatenate((y_test.numpy(), np.zeros((y_test.shape[0], 4))), axis=1))[:, 0]

# 可视化结果
plt.figure(figsize=(14, 7))
plt.plot(data.index[-len(y_test):], y_test_inverse, label='真实价格', color='blue')
plt.plot(data.index[-len(test_outputs):], test_outputs, label='预测价格', color='red')
plt.title('股票价格预测')
plt.xlabel('日期')
plt.ylabel('价格')
plt.legend()
plt.show()

使用说明

  1. 保存脚本

    • 将训练脚本代码保存为 train.py
    • 将模型定义代码保存为 model.py
    • 将测试脚本代码保存为 test.py
  2. 运行训练

    • 在命令行中运行训练脚本:
      python train.py
      
    • 训练完成后,模型将保存为 lstm_model.pth
  3. 运行测试和可视化

    • 在命令行中运行测试脚本:

      python test.py
      
    • 这将加载已训练的模型,并可视化预测结果。
      在这里插入图片描述
      这只是一个演示,模型的预测效果还有待进一步优化。

模型调整

如果预测的价格和真实价格差距较大,可能是由于以下几个原因:

  1. 数据规模不足

    • 如果训练数据不足,模型可能无法学到市场的长期趋势。
    • 改进:使用更多的历史数据,尽量包括多年的数据。可以尝试增加数据的时间跨度。
  2. 数据预处理问题

    • 数据没有正确归一化,或归一化范围过窄。
    • 改进:检查 MinMaxScaler 的应用。你可以尝试不同的归一化范围,例如 (0, 1)(-1, 1),也可以使用其他标准化方法(例如 StandardScaler)。
  3. 模型复杂度不足

    • 模型的层数或隐藏单元数量可能不足以捕捉数据的复杂性。
    • 改进:增加 LSTM 的隐藏层数量或隐藏单元数量。你还可以考虑添加其他类型的层,例如卷积层(CNN)或全连接层,以提高模型的表达能力。
  4. 超参数调整

    • 学习率、批大小和时间步长等超参数可能需要调整以优化模型性能。
    • 改进:尝试不同的学习率(例如,0.001、0.0001 等)、不同的批大小(如 16、32、64)和时间步长(如 30、60)。
  5. 更改损失函数

    • 在某些情况下,使用不同的损失函数可能有助于模型的收敛。
    • 改进:可以尝试使用其他损失函数,例如 Huber 损失函数(nn.SmoothL1Loss)或自定义损失函数,以更好地适应数据。

结论

通过使用 PyTorch 构建 LSTM 模型,我们成功地实现了股票价格的预测。在这个过程中,我们学习了如何处理时间序列数据,构建和训练深度学习模型,以及如何评估和可视化预测结果。尽管模型的性能可能需要进一步的优化和调整,但这个示例为未来的工作奠定了基础。

希望这篇博客能够帮助你在股票价格预测方面取得更好的成果。欢迎分享你的成果和经验,或者提出你的问题!


原文地址:https://blog.csdn.net/qq233325332/article/details/142917392

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!