自学内容网 自学内容网

【模型】Encoder-Decoder模型中Attention机制的引入

Encoder-Decoder 模型中引入 Attention 机制,是为了改善基本Seq2Seq模型的性能,特别是当处理长序列时,传统的Encoder-Decoder模型容易面临信息压缩的困难。Attention机制可以帮助模型动态地选择源序列中相关的信息,从而提高翻译等任务的质量。

一、为什么需要Attention机制?

在基本的 Encoder-Decoder 模型中,Encoder将整个源句子的所有信息压缩成一个固定大小的向量(上下文向量),然后Decoder使用这个向量来生成目标序列。这个单一的上下文向量对于较短的句子可能足够,但对于较长的句子,模型可能无法有效捕捉到整个句子中所有重要的信息。这样容易导致信息丢失,尤其是当句子很长时,Decoder在生成目标词时可能无法获取到源句子的细节信息。

二、Attention机制的核心思想

Attention机制的核心思想是:在每个时间步生成目标单词时,Decoder不再依赖于固定的上下文向量,而是能够通过“注意力”权重,动态地从源句子的所有隐状态中选择最相关的部分。这样,Decoder每生成一个目标词时,能够更好地“关注”源句子中与当前生成词最相关的部分。

三、Attention机制的工作流程

在每一步解码时,Attention机制会根据Decoder的当前状态计算出一组权重,表示源句子中各个位置的隐状态对当前解码步骤的重要性。这些权重用于加权源句子的隐状态,以得到一个上下文向量,这个上下文向量会与当前Decoder的隐状态一起用于生成下一个目标词。

Attention的具体步骤如下:

  1. 计算注意力权重

    • 对于Decoder的每一步(生成每个目标词时),通过Decoder的当前隐状态和源句子每个时间步的隐状态来计算注意力权重。
    • 这些权重表示源句子中每个位置的重要性,可以使用加性Attention点积Attention来计算。
  2. 计算上下文向量

    • 通过将注意力权重与源句子的隐状态进行加权平均,得到一个新的上下文向量。
    • 这个上下文向量包含了源句子中当前对Decoder最重要的信息。
  3. 解码下一步

    • 将新的上下文向量与当前Decoder的隐状态结合,用于生成当前的目标词。

四、Attention机制的公式

对于每个时间步 t:

  1. 计算注意力得分:通常使用Decoder当前的隐状态 ht 和源句子每个位置的隐状态 hs 计算注意力得分,可以通过以下公式计算:

在这里插入图片描述

常见的 score 函数有加性(Bahdanau Attention)和点积(Luong Attention):

  • 加性Attention:使用一个简单的前馈网络对 ht 和 hs 进行线性变换并加和。
  • 点积Attention:直接计算 ht 和 hs 的点积。
  1. 计算注意力权重:对得分 et,s​ 进行Softmax操作,得到权重:

在这里插入图片描述

这些权重 αt,s 表示源句子中各个位置对当前解码的影响力。

  1. 计算上下文向量:使用注意力权重对源句子的隐状态进行加权平均,得到上下文向量 ct:

在这里插入图片描述

  1. 生成下一个词:将上下文向量 ct 与Decoder的隐状态 ht 结合,生成下一个词。

五、引入Attention机制的Encoder-Decoder代码实现

以下是一个带有 Attention 机制的 Encoder-Decoder 模型的简化实现,使用 PyTorch 进行构建。

import torch
import torch.nn as nn

# Encoder模型
class Encoder(nn.Module):
    def __init__(self, input_size, embedding_dim, hidden_size):
        super(Encoder, self).__init__()
        self.embedding = nn.Embedding(input_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_size, batch_first=True)

    def forward(self, src):
        embedded = self.embedding(src)  # [batch_size, src_len, embedding_dim]
        outputs, (hidden, cell) = self.lstm(embedded)  # [batch_size, src_len, hidden_size]
        return outputs, hidden, cell

# Attention模型
class Attention(nn.Module):
    def __init__(self, hidden_size):
        super(Attention, self).__init__()
        self.attn = nn.Linear(hidden_size * 2, hidden_size)
        self.v = nn.Parameter(torch.rand(hidden_size))

    def forward(self, hidden, encoder_outputs):
        src_len = encoder_outputs.shape[1]
        hidden = hidden.unsqueeze(1).repeat(1, src_len, 1)
        energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim=2)))  # [batch_size, src_len, hidden_size]
        energy = torch.sum(self.v * energy, dim=2)  # [batch_size, src_len]
        return torch.softmax(energy, dim=1)  # [batch_size, src_len]

# Decoder模型
class Decoder(nn.Module):
    def __init__(self, output_size, embedding_dim, hidden_size):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(output_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim + hidden_size, hidden_size, batch_first=True)
        self.fc_out = nn.Linear(hidden_size * 2, output_size)
        self.attention = Attention(hidden_size)

    def forward(self, input_token, hidden, cell, encoder_outputs):
        input_token = input_token.unsqueeze(1)  # [batch_size, 1]
        embedded = self.embedding(input_token)  # [batch_size, 1, embedding_dim]
        
        # 计算注意力权重
        attn_weights = self.attention(hidden[-1], encoder_outputs)  # [batch_size, src_len]
        
        # 使用注意力权重对encoder输出进行加权平均
        attn_applied = torch.bmm(attn_weights.unsqueeze(1), encoder_outputs)  # [batch_size, 1, hidden_size]

        # 将注意力上下文向量和嵌入层输入拼接
        lstm_input = torch.cat((embedded, attn_applied), dim=2)  # [batch_size, 1, embedding_dim + hidden_size]
        
        # 通过LSTM
        output, (hidden, cell) = self.lstm(lstm_input, (hidden, cell))  # [batch_size, 1, hidden_size]

        # 生成最终输出
        output = torch.cat((output.squeeze(1), attn_applied.squeeze(1)), dim=1)  # [batch_size, hidden_size * 2]
        prediction = self.fc_out(output)  # [batch_size, output_size]

        return prediction, hidden, cell

# Seq2Seq模型
class Seq2Seq(nn.Module):
    def __init__(self, encoder, decoder, device):
        super(Seq2Seq, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.device = device

    def forward(self, src, tgt, teacher_forcing_ratio=0.5):
        batch_size = tgt.shape[0]
        target_len = tgt.shape[1]
        target_vocab_size = self.decoder.fc_out.out_features

        outputs = torch.zeros(batch_size, target_len, target_vocab_size).to(self.device)

        encoder_outputs, hidden, cell = self.encoder(src)

        input_token = tgt[:, 0]

        for t in range(1, target_len):
            output, hidden, cell = self.decoder(input_token, hidden, cell, encoder_outputs)
            outputs[:, t, :] = output
            top1 = output.argmax(1)
            input_token = tgt[:, t] if torch.rand(1).item() < teacher_forcing_ratio else top1

        return outputs
代码说明:
  1. Encoder

    • 编码源句子,生成隐状态和输出序列。
    • 输出序列会在注意力机制中使用。
  2. Attention

    • Attention 模型根据当前隐状态和Encoder输出计算注意力权重。
    • 使用注意力权重对Encoder输出进行加权平均,得到上下文向量。
    • 将输入的词向量和上下文向量连接,输入到LSTM中
  3. Decoder

    • Decoder在当前时间步会将 当前输入(上一个时间步生成的词)、上一个时间步的隐状态 和 注意力上下文向量 拼接起来,输入到LSTM或GRU中,更新隐状态并生成当前时间步的输出。
  4. Seq2Seq

    • 将Encoder和Decoder结合,逐步生成目标序列。
    • 使用了教师强制机制来控制训练时的输入。
Decoder代码详细解释:
  1. attn_weights = self.attention(hidden[-1], encoder_outputs):

    • hidden[-1] 是Decoder当前时间步的最后一层隐状态(对于多层LSTM来说)。encoder_outputs 是Encoder所有时间步的输出。
    • 调用 self.attention 计算当前时间步的注意力权重。
  2. attn_applied = torch.bmm(attn_weights.unsqueeze(1), encoder_outputs):

    • attn_weights 是注意力权重,形状为 [batch_size, src_len]
    • unsqueeze(1) 将其变为 [batch_size, 1, src_len],然后与 encoder_outputs(形状为 [batch_size, src_len, hidden_size])进行批量矩阵乘法(torch.bmm)。
    • 这样得到的结果 attn_applied 是加权后的上下文向量,形状为 [batch_size, 1, hidden_size],表示根据注意力权重加权后的源句子信息。
  3. torch.cat((embedded, attn_applied), dim=2):

    • 将Decoder的当前输入(嵌入表示)和上下文向量拼接在一起,输入到LSTM中。

六、总结:

Attention机制的引入,允许Decoder在生成每个目标词时,能够动态地根据源句子的不同部分调整注意力,使得模型能够处理更长的序列,并提高生成结果的准确性。Attention机制在机器翻译等任务中取得了显著的效果,并且为之后的Transformer等模型的出现奠定了基础。


原文地址:https://blog.csdn.net/a13545564067/article/details/142883866

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!