自学内容网 自学内容网

unet20241110

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import copy
from einops import rearrange


class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class single_conv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(single_conv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, 5, padding=2),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.conv(x)


class up(nn.Module):
    def __init__(self, in_ch):
        super(up, self).__init__()
        self.up = nn.ConvTranspose2d(in_ch, in_ch // 2, 2, stride=2)
        self.conv_concat = nn.Conv2d(in_ch, in_ch // 2, 3, 1, 1)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x1, x2):
        x1 = self.up(x1)

        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2))

        x = torch.cat((x1, x2), dim=1)
        x = self.conv_concat(x)
        x = self.relu(x)
        return x


# diff
import torch
import torch.nn as nn

class EMA(nn.Module):
    def __init__(self, channels, c2=None, factor=32):
        super(EMA, self).__init__()
        self.groups = factor
        assert channels // self.groups > 0
        self.softmax = nn.Softmax(-1)
        self.agp = nn.AdaptiveAvgPool2d((1, 1))
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))
        self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)
        self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=5, stride=1, padding=2)
        self.conv1x1_3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)
        self.conv1x1_7 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=7, stride=1, padding=3)
        self.conv1x1_c = nn.Conv2d(channels // self.groups*3, channels // self.groups, kernel_size=5, stride=1, padding=2)

        self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=5, stride=1, padding=2)
        self.conv3x3_3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)
        self.conv3x3_7 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=7, stride=1, padding=3)
        self.conv3x3_c = nn.Conv2d(channels // self.groups*3, channels // self.groups, kernel_size=5, stride=1, padding=2)

    def forward(self, x):
        b, c, h, w = x.size()
        group_x = x.reshape(b * self.groups, -1, h, w)  # b*g,c//g,h,w
        x_h = self.pool_h(group_x)
        x_w = self.pool_w(group_x).permute(0, 1, 3, 2)
        hw_5 = self.conv1x1(torch.cat([x_h, x_w], dim=2))
        hw_3 = self.conv1x1_3(torch.cat([x_h, x_w], dim=2))
        hw_7 = self.conv1x1_7(torch.cat([x_h, x_w], dim=2))
        hw = torch.cat([hw_5, hw_3, hw_7], dim=1)
        hw = self.conv1x1_c(hw)

        x_h, x_w = torch.split(hw, [h, w], dim=2)
        x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())
        x2_5 = self.conv3x3(group_x)
        x2_3 = self.conv3x3_3(group_x)
        x2_7 = self.conv3x3_7(group_x)
        x2 = torch.cat([x2_5, x2_3, x2_7], dim=1)
        x2 = self.conv3x3_c(x2)

        x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
        x12 = x2.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hw
        x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
        x22 = x1.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hw
        weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)
        return (group_x * weights.sigmoid()).reshape(b, c, h, w)


# diff
class down(nn.Module):
    def __init__(self, in_channels, dilation_rates=(1, 2, 3)):
        super(down, self).__init__()
        self.conv = nn.ModuleList([
            nn.Sequential(
                nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=d, dilation=d, bias=False),
                nn.ReLU(inplace=True)
            )
            for d in dilation_rates
        ])
        self.conv_2 = nn.Conv2d(in_channels * 3, in_channels, 3, 1, 1)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        outputs = [conv(x) for conv in self.conv]
        out = torch.cat(outputs, dim=1)
        out = self.conv_2(out)
        out = self.relu(out)
        return out


class outconv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(outconv, self).__init__()
        self.conv = nn.Conv2d(in_ch, out_ch, 1)

    def forward(self, x):
        x = self.conv(x)
        return x


class adjust_net(nn.Module):
    def __init__(self, out_channels=64, middle_channels=32):
        super(adjust_net, self).__init__()

        self.model = nn.Sequential(
            nn.Conv2d(2, middle_channels, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.AvgPool2d(2),

            nn.Conv2d(middle_channels, middle_channels * 2, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.AvgPool2d(2),

            nn.Conv2d(middle_channels * 2, middle_channels * 4, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.AvgPool2d(2),

            nn.Conv2d(middle_channels * 4, out_channels * 2, 1, padding=0)
        )

    def forward(self, x):
        out = self.model(x)
        out = F.adaptive_avg_pool2d(out, (1, 1))
        out1 = out[:, :out.shape[1] // 2]
        out2 = out[:, out.shape[1] // 2:]
        return out1, out2


# The architecture of U-Net refers to "Toward Convolutional Blind Denoising of Real Photographs",
# official MATLAB implementation: https://github.com/GuoShi28/CBDNet.
# unofficial PyTorch implementation: https://github.com/IDKiro/CBDNet-pytorch/tree/master.
# We improved it by adding time step embedding and EMM module, while removing the noise estimation network.
class UNet(nn.Module):
    def __init__(self, in_channels=2, out_channels=1):
        super(UNet, self).__init__()

        dim = 32
        self.time_mlp = nn.Sequential(
            SinusoidalPosEmb(dim),
            nn.Linear(dim, dim * 4),
            nn.GELU(),
            nn.Linear(dim * 4, dim)
        )

        self.inc = nn.Sequential(
            single_conv(in_channels, 64),
            single_conv(64, 64)
        )

        self.down1 = down(64)
        self.mlp1 = nn.Sequential(
            nn.GELU(),
            nn.Linear(dim, 64)
        )
        self.adjust1 = adjust_net(64)
        self.conv1 = nn.Sequential(
            single_conv(64, 128),
            single_conv(128, 128),
            single_conv(128, 128)
        )

        self.down2 = down(128)
        self.mlp2 = nn.Sequential(
            nn.GELU(),
            nn.Linear(dim, 128)
        )
        self.adjust2 = adjust_net(128)
        self.conv2 = nn.Sequential(
            single_conv(128, 256),
            single_conv(256, 256),
            single_conv(256, 256),
            single_conv(256, 256),
            single_conv(256, 256),
            single_conv(256, 256)
        )

        self.up1 = up(256)
        self.mlp3 = nn.Sequential(
            nn.GELU(),
            nn.Linear(dim, 128)
        )
        self.adjust3 = adjust_net(128)
        self.conv3 = nn.Sequential(
            single_conv(128, 128),
            single_conv(128, 128),
            single_conv(128, 128)
        )

        self.up2 = up(128)
        self.mlp4 = nn.Sequential(
            nn.GELU(),
            nn.Linear(dim, 64)
        )
        self.adjust4 = adjust_net(64)
        self.conv4 = nn.Sequential(
            single_conv(64, 64),
            single_conv(64, 64)
        )

        self.outc = outconv(64, out_channels)

        self.ema1 = EMA(channels=128)
        self.ema2 = EMA(channels=256)
        self.ema3 = EMA(channels=128)
        self.ema4 = EMA(channels=64)

    def forward(self, x, t, x_adjust, adjust):
        inx = self.inc(x)
        time_emb = self.time_mlp(t)
        down1 = self.down1(inx)
        condition1 = self.mlp1(time_emb)
        b, c = condition1.shape
        condition1 = rearrange(condition1, 'b c -> b c 1 1')
        if adjust:
            gamma1, beta1 = self.adjust1(x_adjust)
            down1 = down1 + gamma1 * condition1 + beta1
        else:
            down1 = down1 + condition1
        conv1 = self.conv1(down1)
        # diff: 通过EMA模块处理conv1的输出
        conv1 = self.ema1(conv1)

        down2 = self.down2(conv1)
        condition2 = self.mlp2(time_emb)
        b, c = condition2.shape
        condition2 = rearrange(condition2, 'b c -> b c 1 1')
        if adjust:
            gamma2, beta2 = self.adjust2(x_adjust)
            down2 = down2 + gamma2 * condition2 + beta2
        else:
            down2 = down2 + condition2
        conv2 = self.conv2(down2)
        # diff: 通过EMA模块处理conv2的输出
        conv2 = self.ema2(conv2)

        up1 = self.up1(conv2, conv1)
        condition3 = self.mlp3(time_emb)
        b, c = condition3.shape
        condition3 = rearrange(condition3, 'b c -> b c 1 1')
        if adjust:
            gamma3, beta3 = self.adjust3(x_adjust)
            up1 = up1 + gamma3 * condition3 + beta3
        else:
            up1 = up1 + condition3
        conv3 = self.conv3(up1)
        conv3 = self.ema3(conv3)

        up2 = self.up2(conv3, inx)
        condition4 = self.mlp4(time_emb)
        b, c = condition4.shape
        condition4 = rearrange(condition4, 'b c -> b c 1 1')
        if adjust:
            gamma4, beta4 = self.adjust4(x_adjust)
            up2 = up2 + gamma4 * condition4 + beta4
        else:
            up2 = up2 + condition4
        conv4 = self.conv4(up2)
        conv4 = self.ema4(conv4)

        out = self.outc(conv4)

        return out


class Network(nn.Module):
    def __init__(self, in_channels=3, out_channels=1, context=True):
        super(Network, self).__init__()
        self.unet = UNet(in_channels=in_channels, out_channels=out_channels)
        self.context = context

    def forward(self, x, t, y, x_end, adjust=True):
        if self.context:
            x_middle = x[:, 1].unsqueeze(1)
        else:
            x_middle = x

        x_adjust = torch.cat((y, x_end), dim=1)
        out = self.unet(x, t, x_adjust, adjust=adjust) + x_middle

        return out


# WeightNet of the one-shot learning framework
class WeightNet(nn.Module):
    def __init__(self, weight_num=10):
        super(WeightNet, self).__init__()
        init = torch.ones([1, weight_num, 1, 1]) / weight_num
        self.weights = nn.Parameter(init)

    def forward(self, x):
        weights = F.softmax(self.weights, 1)
        out = weights * x
        out = out.sum(dim=1, keepdim=True)

        return out, weights


# Main function to test the model
def main():
    # Set random seed for reproducibility
    torch.manual_seed(0)

    # Instantiate the model
    model = Network(in_channels=2, out_channels=1, context=True)

    # Set the model to evaluation mode (since we're debugging dimensions)
    model.eval()

    # Define input dimensions
    batch_size = 2
    num_channels = 2  # Input channels for x
    height = 64
    width = 64

    # Create sample inputs
    x = torch.randn(batch_size, num_channels, height, width)
    t = torch.randint(0, 1000, (batch_size,))
    y = torch.randn(batch_size, 1, height, width)
    x_end = torch.randn(batch_size, 1, height, width)

    # Pass the inputs through the model
    with torch.no_grad():
        output = model(x, t, y, x_end, adjust=True)

    # Print the output shape
    print(f"Final output shape: {output.shape}")


if __name__ == "__main__":
    main()

原文地址:https://blog.csdn.net/yyfhq/article/details/143658285

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!