自学内容网 自学内容网

代码随想录算法训练Day58|LeetCode417-太平洋大西洋水流问题、LeetCode827-最大人工岛

太平洋大西洋水流问题

力扣417-太平洋大西洋水流问题

有一个 m × n 的矩形岛屿,与 太平洋 和 大西洋 相邻。 “太平洋” 处于大陆的左边界和上边界,而 “大西洋” 处于大陆的右边界和下边界。

这个岛被分割成一个由若干方形单元格组成的网格。给定一个 m x n 的整数矩阵 heights , heights[r] [c] 表示坐标 (r, c) 上单元格 高于海平面的高度

岛上雨水较多,如果相邻单元格的高度 小于或等于 当前单元格的高度,雨水可以直接向北、南、东、西流向相邻单元格。水可以从海洋附近的任何单元格流入海洋。

返回网格坐标 result 的 2D 列表 ,其中 result[i] = [ri, ci] 表示雨水从单元格 (ri, ci) 流动既可流向太平洋也可流向大西洋 。

示例 1:

img

  • 输入: heights = [[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]
  • 输出: [[0,4],[1,3],[1,4],[2,2],[3,0],[3,1],[4,0]]

示例 2:

  • 输入: heights = [[2,1],[1,2]]
  • 输出: [[0,0],[0,1],[1,0],[1,1]]

解题思路

DFS 通过递归或栈来实现,沿着一个路径尽可能深地搜索,直到到达最远的节点,然后回溯并探索其他路径。在这个问题中,从每个起始点开始,DFS 沿着四个方向探索,直到无法继续前进或达到边界。

class Solution {
    private final int[][] dir = {{-1, 0}, {0, -1}, {1, 0}, {0, 1}}; // 保存四个方向

    // 从低向高遍历,注意这里 visited 是引用,即可以改变传入的 pacific 和 atlantic 的值
    private void dfs(int[][] heights, boolean[][] visited, int x, int y) {
        if (visited[x][y]) return;//如果当前坐标 (x, y) 已经被访问过,则直接返回,不再进行后续操作。
        visited[x][y] = true;//只要加入,立刻标记为访问过的节点
        for (int[] d : dir) { // 向四个方向遍历 8-17
            int nextx = x + d[0];
            int nexty = y + d[1];
            // 超过边界
            if (nextx < 0 || nextx >= heights.length || nexty < 0 || nexty >= heights[0].length) continue;
            // 高度不合适,注意这里是从低向高判断
            if (heights[x][y] > heights[nextx][nexty]) continue;

            dfs(heights, visited, nextx, nexty);
        }
    }

    public List<List<Integer>> pacificAtlantic(int[][] heights) {
        List<List<Integer>> result = new ArrayList<>();
        int n = heights.length;
        int m = heights[0].length; // 这里不用担心空指针,题目要求说了长宽都大于1

        // 记录从太平洋边出发,可以遍历的节点
        boolean[][] pacific = new boolean[n][m];

        // 记录从大西洋出发,可以遍历的节点
        boolean[][] atlantic = new boolean[n][m];

        // 从最上最下行的节点出发,向高处遍历
        for (int i = 0; i < n; i++) {
            dfs(heights, pacific, i, 0); // 遍历最左列,接触太平洋 
            dfs(heights, atlantic, i, m - 1); // 遍历最右列,接触大西洋 
        }

        // 从最左最右列的节点出发,向高处遍历
        for (int j = 0; j < m; j++) {
            dfs(heights, pacific, 0, j); // 遍历最上行,接触太平洋
            dfs(heights, atlantic, n - 1, j); // 遍历最下行,接触大西洋
        }

        // 找到同时被太平洋和大西洋访问的节点
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (pacific[i][j] && atlantic[i][j]) result.add(List.of(i, j));
            }
        }
        return result;
    }
}

result.add(List.of(i, j)

List.of()
List.of方法允许我们创建一个不可变的List集合,其中包含指定的元素。
List immutableList = List.of(“apple”, “banana”, “orange”);

Map.of()
Map.of方法允许我们创建一个不可变的Map集合,其中包含指定的键值对。
Map<String, Integer> immutableMap = Map.of(“apple”, 1, “banana”, 2, “orange”, 3);

Set.of()
Set.of方法允许我们创建一个不可变的Set集合,其中包含指定的元素。
Set immutableSet = Set.of(“apple”, “banana”, “orange”);

最大人工岛

题目描述

力扣827-最大人工岛

给你一个大小为 n x n 二进制矩阵 grid 。最多 只能将一格 0 变成 1 。

返回执行此操作后,grid 中最大的岛屿面积是多少?

岛屿 由一组上、下、左、右四个方向相连的 1 形成。

示例 1:

  • 输入: grid = [[1, 0], [0, 1]]
  • 输出: 3
  • 解释: 将一格0变成1,最终连通两个小岛得到面积为 3 的岛屿。

示例 2:

  • 输入: grid = [[1, 1], [1, 0]]
  • 输出: 4
  • 解释: 将一格0变成1,岛屿的面积扩大为 4。

示例 3:

  • 输入: grid = [[1, 1], [1, 1]]
  • 输出: 4
  • 解释: 没有0可以让我们变成1,面积依然为 4。

解题思路

其实每次深搜遍历计算最大岛屿面积,我们都做了很多重复的工作。

只要用一次深搜把每个岛屿的面积记录下来就好。

第一步:一次遍历地图,得出各个岛屿的面积,并做编号记录。可以使用map记录,key为岛屿编号,value为岛屿面积 第二步:在遍历地图,遍历0的方格(因为要将0变成1),并统计该1(由0变成的1)周边岛屿面积,将其相邻面积相加在一起,遍历所有 0 之后,就可以得出 选一个0变成1 之后的最大面积。

拿如下地图的岛屿情况来举例: (1为陆地)

img

第一步,则遍历题目,并将岛屿到编号和面积上的统计,过程如图所示:

img

本过程代码如下:

    private int[][] dir = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; // 四个方向

    private void dfs(int[][] grid, boolean[][] visited, int x, int y, int mark) {
        if (visited[x][y] || grid[x][y] == 0) return; // 终止条件:访问过的节点 或者 遇到海水
        visited[x][y] = true; // 标记访问过
        grid[x][y] = mark; // 给陆地标记新标签
        count++;
        for (int i = 0; i < 4; i++) {
            int nextx = x + dir[i][0];
            int nexty = y + dir[i][1];
            if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length) continue;  // 越界了,直接跳过
            dfs(grid, visited, nextx, nexty, mark);
        }
    }

    public int largestIsland(int[][] grid) {
        int n = grid.length, m = grid[0].length;
        boolean[][] visited = new boolean[n][m]; // 标记访问过的点
        Map<Integer, Integer> gridNum = new HashMap<>();
        int mark = 2; // 记录每个岛屿的编号
        boolean isAllGrid = true; // 标记是否整个地图都是陆地
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (grid[i][j] == 0) isAllGrid = false;
                if (!visited[i][j] && grid[i][j] == 1) {
                    count = 0;
                    dfs(grid, visited, i, j, mark); // 将与其链接的陆地都标记上 true
                    gridNum.put(mark, count); // 记录每一个岛屿的面积
                    mark++; // 记录下一个岛屿编号
                }
            }
        }
    }

这个过程时间复杂度 n * n 。可能有录友想:分明是两个for循环下面套这一个dfs,时间复杂度怎么回事 n * n呢?

其实大家可以仔细看一下代码,n * n这个方格地图中,每个节点我们就遍历一次,并不会重复遍历

第二步过程如图所示:

img

也就是遍历每一个0的方格,并统计其相邻岛屿面积,最后取一个最大值。

这个过程的时间复杂度也为 n * n。

所以整个解法的时间复杂度,为 n * n + n * n 也就是 n^2。

当然这里还有一个优化的点,就是 可以不用 visited数组,因为有mark来标记,所以遍历过的grid[i] [j]是不等于1的。

不过为了让各个变量各司其事,代码清晰一些,完整代码还是使用visited数组来标记。

最后,整体代码如下:

class Solution {
    private int count;
    private int[][] dir = { { 0, 1 }, { 1, 0 }, { -1, 0 }, { 0, -1 } }; // 四个方向

    private void dfs(int[][] grid, boolean[][] visited, int x, int y, int mark) {
        if (visited[x][y] || grid[x][y] == 0)
            return; // 终止条件:访问过的节点 或者 遇到海水
        visited[x][y] = true; // 标记访问过
        grid[x][y] = mark; // 给陆地标记新标签
        count++;
        for (int i = 0; i < 4; i++) {
            int nextx = x + dir[i][0];
            int nexty = y + dir[i][1];
            if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length)
                continue; // 越界了,直接跳过
            dfs(grid, visited, nextx, nexty, mark);
        }
    }

    public int largestIsland(int[][] grid) {
        int n = grid.length, m = grid[0].length;
        boolean[][] visited = new boolean[n][m]; // 标记访问过的点
        Map<Integer, Integer> gridNum = new HashMap<>();
        int mark = 2; // 记录每个岛屿的编号
        boolean isAllGrid = true; // 标记是否整个地图都是陆地
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (grid[i][j] == 0)
                    isAllGrid = false;
                if (!visited[i][j] && grid[i][j] == 1) {
                    count = 0;
                    dfs(grid, visited, i, j, mark); // 将与其链接的陆地都标记上 true
                    gridNum.put(mark, count); // 记录每一个岛屿的面积
                    mark++; // 记录下一个岛屿编号
                }
            }
        }
        if (isAllGrid)
            return n * m; // 如果都是陆地,返回全面积

        // 以下逻辑是根据添加陆地的位置,计算周边岛屿面积之和
        int result = 0; // 记录最后结果
        Set<Integer> visitedGrid = new HashSet<>(); // 标记访问过的岛屿
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                int currentCount = 1; // 记录连接之后的岛屿数量
                visitedGrid.clear(); // 每次使用时,清空
                if (grid[i][j] == 0) {
                    for (int k = 0; k < 4; k++) {
                        int neari = i + dir[k][0]; // 计算相邻坐标
                        int nearj = j + dir[k][1];
                        if (neari < 0 || neari >= grid.length || nearj < 0 || nearj >= grid[0].length)
                            continue;
                        if (visitedGrid.contains(grid[neari][nearj]))
                            continue; // 添加过的岛屿不要重复添加
                        // 把相邻四面的岛屿数量加起来
                        if (grid[neari][nearj] > 1) {
                            currentCount += gridNum.get(grid[neari][nearj]);
                            visitedGrid.add(grid[neari][nearj]); // 标记该岛屿已经添加过
                        }
                    }
                }
                result = Math.max(result, currentCount);
            }
        }
        return result;
    }
}


原文地址:https://blog.csdn.net/m0_75002567/article/details/140235807

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!