自学内容网 自学内容网

【数学分析笔记】第4章第5节 高阶导数和高阶微分(2)

4.5 高阶导数和高阶微分

【例4.5.3】 y = x m , m y=x^m,m y=xm,m是正整数,求 y ( n ) y^{(n)} y(n).
【解】 y ′ = m x m − 1 y'=mx^{m-1} y=mxm1
y ′ ′ = m ( m − 1 ) x m − 2 y''=m(m-1)x^{m-2} y′′=m(m1)xm2
y ′ ′ ′ = m ( m − 1 ) ( m − 2 ) x m − 3 y'''=m(m-1)(m-2)x^{m-3} y′′′=m(m1)(m2)xm3

y ( m ) = m ( m − 1 ) . . . 2 ⋅ 1 x 0 = m ! y^{(m)}=m(m-1)...2\cdot1x^0=m! y(m)=m(m1)...21x0=m!
y ( m + 1 ) = 0 y^{(m+1)}=0 y(m+1)=0
( x m ) ( n ) = { m ( m − 1 ) . . . ( m − n + 1 ) x m − n , n ≤ m 0 , n > m (x^m)^{(n)}=\left\{\begin{matrix} m(m-1)...(m-n+1) x^{m-n}&, n\le m \\ 0&,n>m \end{matrix}\right. (xm)(n)={m(m1)...(mn+1)xmn0,nm,n>m


【例4.5.4】 y = ln ⁡ x y=\ln x y=lnx,求 y ( n ) y^{(n)} y(n).
【解】 y ′ = 1 x = x − 1 = 1 x y'=\frac{1}{x}=x^{-1}=\frac{1}{x} y=x1=x1=x1
y ′ ′ = − x − 2 = − 1 x 2 y''=-x^{-2}=-\frac{1}{x^2} y′′=x2=x21
y ′ ′ ′ = ( − 1 ) ( − 2 ) x − 3 = 2 x 3 y'''=(-1)(-2)x^{-3}=\frac{2}{x^3} y′′′=(1)(2)x3=x32
y ( 4 ) = ( − 1 ) ( − 2 ) ( − 3 ) x − 4 = − 3 ! x 4 y^{(4)}=(-1)(-2)(-3)x^{-4}=-\frac{3!}{x^4} y(4)=(1)(2)(3)x4=x43!

于是 y ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n y^{(n)}=(-1)^{n-1}\frac{(n-1)!}{x^n} y(n)=(1)n1xn(n1)!


【例】 y = 1 x y=\frac{1}{x} y=x1,求 y ( n ) y^{(n)} y(n).
【解】 ( 1 x ) ( n ) = ( ln ⁡ x ) ( n + 1 ) = ( − 1 ) n n ! x n + 1 (\frac{1}{x})^{(n)}=(\ln x)^{(n+1)}=(-1)^{n}\frac{n!}{x^{n+1}} (x1)(n)=(lnx)(n+1)=(1)nxn+1n!

4.5.1 高阶导数运算法则

【定理4.5.1】 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)都是 n n n次可导,则 ( c 1 f ( x ) + c 2 g ( x ) ) ( n ) = c 1 f ( n ) ( x ) + c 2 g ( n ) ( x ) (c_1f(x)+c_2g(x))^{(n)}=c_1f^{(n)}(x)+c_2g^{(n)}(x) (c1f(x)+c2g(x))(n)=c1f(n)(x)+c2g(n)(x).
推广到 n n n项有:



【定理4.5.2】【Leibniz(莱布尼茨)公式】 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)都是 n n n次可导,则 ( f ( x ) ⋅ g ( x ) ) ( n ) = ∑ k = 0 n C n k f ( n − k ) ( x ) g ( k ) ( x ) (f(x)\cdot g(x))^{(n)}=\sum\limits_{k=0}^{n}\mathrm{C}_{n}^{k}f^{(n-k)}(x)g^{(k)}(x) (f(x)g(x))(n)=k=0nCnkf(nk)(x)g(k)(x)
【证】用数学归纳法
n = 1 n=1 n=1 ( f ( x ) ⋅ g ( x ) ) ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) = ∑ k = 0 1 C 1 k f ( n − k ) ( x ) g ( k ) ( x ) (f(x)\cdot g(x))'=f'(x)g(x)+f(x)g'(x)=\sum\limits_{k=0}^{1}\mathrm{C}_{1}^{k}f^{(n-k)}(x)g^{(k)}(x) (f(x)g(x))=f(x)g(x)+f(x)g(x)=k=01C1kf(nk)(x)g(k)(x)
n = 1 n=1 n=1时,莱布尼茨公式成立
设莱布尼茨公式对 n = m n=m n=m成立,即 ( f ( x ) g ( x ) ) ( m ) = ∑ k = 0 m C m k f ( n − k ) ( x ) g ( k ) ( x ) (f(x)g(x))^{(m)}=\sum\limits_{k=0}^{m}\mathrm{C}_{m}^{k}f^{(n-k)}(x)g^{(k)}(x) (f(x)g(x))(m)=k=0mCmkf(nk)(x)g(k)(x)
( f ( x ) g ( x ) ) ( m + 1 ) = ( ( f ( x ) g ( x ) ) ( m ) ) ′ = ∑ k = 0 m C m k ( f ( n − k ) ( x ) g ( k ) ( x ) ) ′ = ∑ k = 0 m C m k ( f ( n − k + 1 ) ( x ) g ( k ) ( x ) + f ( n − k ) ( x ) g ( k + 1 ) ) = ∑ k = 0 m C m k f ( n − k + 1 ) ( x ) g ( k ) ( x ) + ∑ k = 0 m C m k f ( n − k ) ( x ) g ( k + 1 ) = f ( n + 1 ) ( x ) g ( x ) + ∑ k = 1 m C m k f ( n − k + 1 ) ( x ) g ( k ) ( x ) + ∑ k = 1 m + 1 C m k − 1 f ( n − k + 1 ) ( x ) g ( k ) ( x ) = ∑ k = 0 m C m k ( f ( n − k + 1 ) ( x ) g ( k ) ( x ) + f ( n − k ) ( x ) g ( k + 1 ) ) = f ( n + 1 ) ( x ) g ( x ) + ∑ k = 1 m C m k f ( n − k + 1 ) ( x ) g ( k ) ( x ) + ∑ k = 1 m C m k − 1 f ( n − k + 1 ) ( x ) g ( k ) + C m m f ( x ) g ( m + 1 ) ( x ) = f ( n + 1 ) ( x ) g ( x ) + ( f ( n − k + 1 ) ( x ) g ( k ) ( x ) ) ( ∑ k = 1 m C m k + ∑ k = 1 m C m k − 1 ) + f ( x ) g ( m + 1 ) ( x ) (f(x)g(x))^{(m+1)}\\=((f(x)g(x))^{(m)})'\\ =\sum\limits_{k=0}^{m}\mathrm{C}_{m}^{k}(f^{(n-k)}(x)g^{(k)}(x))'\\ =\sum\limits_{k=0}^{m}\mathrm{C}_{m}^{k}(f^{(n-k+1)}(x)g^{(k)}(x)+f^{(n-k)}(x)g^{(k+1)})\\ =\sum\limits_{k=0}^{m}\mathrm{C}_{m}^{k}f^{(n-k+1)}(x)g^{(k)}(x)+\sum\limits_{k=0}^{m}\mathrm{C}_{m}^{k}f^{(n-k)}(x)g^{(k+1)}\\ =f^{(n+1)}(x)g(x)+\sum\limits_{k=1}^{m}\mathrm{C}_{m}^{k}f^{(n-k+1)}(x)g^{(k)}(x)+\sum\limits_{k=1}^{m+1}\mathrm{C}_{m}^{k-1}f^{(n-k+1)}(x)g^{(k)}(x)\\ =\sum\limits_{k=0}^{m}\mathrm{C}_{m}^{k}(f^{(n-k+1)}(x)g^{(k)}(x)+f^{(n-k)}(x)g^{(k+1)})\\ =f^{(n+1)}(x)g(x)+\sum\limits_{k=1}^{m}\mathrm{C}_{m}^{k}f^{(n-k+1)}(x)g^{(k)}(x)+\sum\limits_{k=1}^{m}\mathrm{C}_{m}^{k-1}f^{(n-k+1)}(x)g^{(k)}+\mathrm{C}_{m}^{m}f(x)g^{(m+1)}(x)\\ =f^{(n+1)}(x)g(x)+(f^{(n-k+1)}(x)g^{(k)}(x))(\sum\limits_{k=1}^{m}\mathrm{C}_{m}^{k}+\sum\limits_{k=1}^{m}\mathrm{C}_{m}^{k-1})+f(x)g^{(m+1)}(x) (f(x)g(x))(m+1)=((f(x)g(x))(m))=k=0mCmk(f(nk)(x)g(k)(x))=k=0mCmk(f(nk+1)(x)g(k)(x)+f(nk)(x)g(k+1))=k=0mCmkf(nk+1)(x)g(k)(x)+k=0mCmkf(nk)(x)g(k+1)=f(n+1)(x)g(x)+k=1mCmkf(nk+1)(x)g(k)(x)+k=1m+1Cmk1f(nk+1)(x)g(k)(x)=k=0mCmk(f(nk+1)(x)g(k)(x)+f(nk)(x)g(k+1))=f(n+1)(x)g(x)+k=1mCmkf(nk+1)(x)g(k)(x)+k=1mCmk1f(nk+1)(x)g(k)+Cmmf(x)g(m+1)(x)=f(n+1)(x)g(x)+(f(nk+1)(x)g(k)(x))(k=1mCmk+k=1mCmk1)+f(x)g(m+1)(x)
由公式 C m n = C m − 1 n − 1 + C m − 1 n \mathrm{C}_{m}^{n}=\mathrm{C}_{m-1}^{n-1}+\mathrm{C}_{m-1}^{n} Cmn=Cm1n1+Cm1n可知
f ( n + 1 ) ( x ) g ( x ) + ( f ( n − k + 1 ) ( x ) g ( k ) ( x ) ) ( ∑ k = 1 m C m k + ∑ k = 1 m C m k − 1 ) + f ( x ) g ( m + 1 ) ( x ) = C 0 m + 1 f ( n + 1 ) ( x ) g ( x ) + ∑ k = 1 m C m + 1 k ( f ( n − k + 1 ) ( x ) g ( k ) ( x ) ) + C m + 1 m + 1 f ( x ) g ( m + 1 ) ( x ) = ∑ k = 0 n C m + 1 k f ( m + 1 − k ) ( x ) g ( k ) ( x ) f^{(n+1)}(x)g(x)+(f^{(n-k+1)}(x)g^{(k)}(x))(\sum\limits_{k=1}^{m}\mathrm{C}_{m}^{k}+\sum\limits_{k=1}^{m}\mathrm{C}_{m}^{k-1})+f(x)g^{(m+1)}(x)\\ =\mathrm{C}_{0}^{m+1}f^{(n+1)}(x)g(x)+\sum\limits_{k=1}^{m}\mathrm{C}_{m+1}^{k}(f^{(n-k+1)}(x)g^{(k)}(x))+\mathrm{C}_{m+1}^{m+1}f(x)g^{(m+1)}(x)\\ =\sum\limits_{k=0}^{n}\mathrm{C}_{m+1}^{k}f^{(m+1-k)}(x)g^{(k)}(x) f(n+1)(x)g(x)+(f(nk+1)(x)g(k)(x))(k=1mCmk+k=1mCmk1)+f(x)g(m+1)(x)=C0m+1f(n+1)(x)g(x)+k=1mCm+1k(f(nk+1)(x)g(k)(x))+Cm+1m+1f(x)g(m+1)(x)=k=0nCm+1kf(m+1k)(x)g(k)(x)
所以莱布尼茨公式对 n = m + 1 n=m+1 n=m+1也成立
【注】 C n k = n ! k ! ( n − k ) ! \mathrm{C}_{n}^{k}=\frac{n!}{k!(n-k)!} Cnk=k!(nk)!n!
【注】可以类比 ( a + b ) n = ∑ k = 0 n C n k a n − k b k (a+b)^n=\sum\limits_{k=0}^{n}\mathrm{C}_{n}^{k}a^{n-k}b^k (a+b)n=k=0nCnkankbk


【例4.5.5】求 y = ( 3 x 2 − 2 ) sin ⁡ 2 x y=(3x^2-2)\sin 2x y=(3x22)sin2x 100 100 100阶导数。
【解】 y ( 100 ) = ∑ k = 0 100 C 100 k ( sin ⁡ 2 x ) ( 100 − k ) ( 3 x 2 − 2 ) ( k ) y^{(100)}=\sum\limits_{k=0}^{100}\mathrm{C}_{100}^{k}(\sin 2x)^{(100-k)}(3x^2-2)^{(k)} y(100)=k=0100C100k(sin2x)(100k)(3x22)(k)
由于从 n = 3 n=3 n=3开始, ( 3 x 2 − 2 ) ( n ) = 0 (3x^2-2)^{(n)}=0 (3x22)(n)=0,所以
y ( 100 ) = ∑ k = 0 2 C 100 k ( sin ⁡ 2 x ) ( 100 − k ) ( 3 x 2 − 2 ) ( k ) = ( sin ⁡ 2 x ) ( 100 ) ( 3 x 2 − 2 ) + 100 ( sin ⁡ 2 x ) ( 99 ) ⋅ 6 x + 4950 ( sin ⁡ 2 x ) ( 98 ) ⋅ 6 y^{(100)}=\sum\limits_{k=0}^{2}\mathrm{C}_{100}^{k}(\sin 2x)^{(100-k)}(3x^2-2)^{(k)}=(\sin 2x)^{(100)}(3x^2-2)+100(\sin 2x)^{(99)}\cdot 6x+4950(\sin 2x)^{(98)}\cdot 6 y(100)=k=02C100k(sin2x)(100k)(3x22)(k)=(sin2x)(100)(3x22)+100(sin2x)(99)6x+4950(sin2x)(98)6
( sin ⁡ 2 x ) ( n ) = 2 n sin ⁡ ( 2 x + n π 2 ) (\sin 2x)^{(n)}=2^n\sin(2x + \frac{n\pi}{2}) (sin2x)(n)=2nsin(2x+2)
所以
y ( 100 ) = ( sin ⁡ 2 x ) ( 100 ) ( 3 x 2 − 2 ) + 100 ( sin ⁡ 2 x ) ( 99 ) ⋅ 6 x + 4950 ( sin ⁡ 2 x ) ( 98 ) ⋅ 6 = 2 100 sin ⁡ ( 2 x + 100 π 2 ) ( 3 x 2 − 2 ) + 100 ⋅ 2 99 sin ⁡ ( 2 x + 99 π 2 ) ⋅ 6 x + 4950 ⋅ 2 98 sin ⁡ ( 2 x + 98 π 2 ) ⋅ 6 = 2 98 ( 4 ( 3 x 2 − 2 ) sin ⁡ 2 x − 1200 x cos ⁡ 2 x + 29700 sin ⁡ 2 x ) = 2 98 ( 4 ( 3 x 2 − 2 ) sin ⁡ 2 x − 1200 x cos ⁡ 2 x − 29700 sin ⁡ 2 x ) = 2 98 ( ( 12 x 2 − 29708 ) sin ⁡ 2 x − 1200 x cos ⁡ 2 x ) y^{(100)}=(\sin 2x)^{(100)}(3x^2-2)+100(\sin 2x)^{(99)}\cdot 6x+4950(\sin 2x)^{(98)}\cdot 6\\=2^{100}\sin(2x+\frac{100\pi}{2})(3x^2-2)+100\cdot 2^{99}\sin(2x+\frac{99\pi}{2})\cdot 6x+4950\cdot 2^{98}\sin(2x + \frac{98\pi}{2})\cdot 6\\ =2^{98}(4(3x^2-2)\sin 2x-1200x\cos 2x+29700\sin 2x)\\ =2^{98}(4(3x^2-2)\sin 2x-1200x\cos 2x-29700\sin 2x)\\ =2^{98}((12x^2-29708)\sin 2x-1200x\cos 2x) y(100)=(sin2x)(100)(3x22)+100(sin2x)(99)6x+4950(sin2x)(98)6=2100sin(2x+2100π)(3x22)+100299sin(2x+299π)6x+4950298sin(2x+298π)6=298(4(3x22)sin2x1200xcos2x+29700sin2x)=298(4(3x22)sin2x1200xcos2x29700sin2x)=298((12x229708)sin2x1200xcos2x)

【注】 ( f ( x ) g ( x ) ) ( n ) = ( f ( x ) 1 g ( x ) ) ( n ) = . . . (\frac{f(x)}{g(x)})^{(n)}=(f(x)\frac{1}{g(x)})^{(n)}=... (g(x)f(x))(n)=(f(x)g(x)1)(n)=...


复合函数,隐函数,参数表示的函数的高阶导数:

复合函数: y = f ( u ) , u = g ( x ) , d y d x = d y d u ⋅ d u d x y=f(u),u=g(x),\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} y=f(u),u=g(x),dxdy=dudydxdu
y ′ ′ ( x ) = d d x ( d y d x ) = d d x ( d y d u ⋅ d u d x ) = d d x ( d y d u ) ⋅ ( d u d x ) + d y d u ⋅ d d x ( d u d x ) = d d u ( d y d u ) ⋅ d u d x ⋅ ( d u d x ) + d y d u ⋅ d d x ( d u d x ) = f ′ ′ ( u ) ( g ′ ( x ) ) 2 + f ′ ( u ) g ′ ′ ( x ) y''(x)=\frac{d}{dx}(\frac{dy}{dx})=\frac{d}{dx}(\frac{dy}{du}\cdot\frac{du}{dx})=\frac{d}{dx}(\frac{dy}{du})\cdot(\frac{du}{dx})+\frac{dy}{du}\cdot\frac{d}{dx}(\frac{du}{dx})=\frac{d}{du}(\frac{dy}{du})\cdot\frac{du}{dx}\cdot(\frac{du}{dx})+\frac{dy}{du}\cdot\frac{d}{dx}(\frac{du}{dx})=f''(u)(g'(x))^2+f'(u)g''(x) y′′(x)=dxd(dxdy)=dxd(dudydxdu)=dxd(dudy)(dxdu)+dudydxd(dxdu)=dud(dudy)dxdu(dxdu)+dudydxd(dxdu)=f′′(u)(g(x))2+f(u)g′′(x)
y ′ ′ ′ ( x ) = f ′ ′ ′ ( u ) g ′ ( x ) ⋅ ( g ′ ( x ) ) 2 + f ′ ′ ( u ) 2 g ′ ( x ) g ′ ′ ( x ) + f ′ ′ ( u ) g ′ ( x ) g ′ ′ ( x ) + f ′ ( u ) g ′ ′ ′ ( x ) = f ′ ′ ′ ( u ) ( g ′ ( x ) ) 3 + 3 f ′ ′ ( u ) g ′ ( x ) g ′ ′ ( x ) + f ′ ( u ) g ′ ′ ′ ( x ) y'''(x)=f'''(u)g'(x)\cdot (g'(x))^2+f''(u)2g'(x)g''(x)+f''(u)g'(x)g''(x)+f'(u)g'''(x)=f'''(u)(g'(x))^3+3f''(u)g'(x)g''(x)+f'(u)g'''(x) y′′′(x)=f′′′(u)g(x)(g(x))2+f′′(u)2g(x)g′′(x)+f′′(u)g(x)g′′(x)+f(u)g′′′(x)=f′′′(u)(g(x))3+3f′′(u)g(x)g′′(x)+f(u)g′′′(x)


原文地址:https://blog.csdn.net/qq_30204431/article/details/142750298

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!