黑马程序员MQ学习【持续更新】
RabbitMQ(message queue)
一、初识MQ
1.同步和异步通讯
服务间通讯有同步和异步两种方式:
- 同步通讯:就像打电话,需要实时响应
- 异步通讯:就像发邮件,不需要马上回复
两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。
1.1同步通讯
虽然调用可以实时得到结果,但存在下面的问题:
总结:
同步调用的优点:
- 时效性较强,可以立即得到结果
同步调用的问题:
- 耦合度高
- 性能下降
- 有额外的资源消耗
- 有级联失败问题
1.2异步通讯
异步调用则可以避免上述问题;
我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。
在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。
订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。
为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。
Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。
好处:
- 吞吐量提升:无需等待订阅者处理完成,响应更快速
- 故障隔离:服务没有直接调用,不存在级联失败问题
- 调用间没有阻塞,不会造成无效资源占用
- 耦合度极低,每个服务都 可以灵活插拔,可替换
- 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件。
缺点:
- 架构复杂,业务没有明显的流程线,不好管理
- 需要依赖于Broker的可靠、安全、性能
好在现在开源软件或云平台上Broker的软件是非常成熟的,比较常见的一种就是我们今天要学的MQ技术。
2.技术对比
MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。
比较常见的MQ实现:
- ActiveMQ
- RabbitMQ
- RocketMQ
- Kafka
几种常见MQ的对比:
RabbitMQ | ActiveMQ | RocketMQ | Kafka | |
---|---|---|---|---|
公司/社区 | Rabbit | Apache | 阿里 | Apache |
开发语言 | Erlang(并发能力强,性能及其好) | Java | Java | Scala&Java |
协议支持 | AMQP,XMPP,SMTP,STOMP | OpenWire,STOMP,REST,XMPP,AMQP | 自定义协议 | 自定义协议 |
可用性 | 高 | 一般 | 高 | 高 |
单机吞吐量(性能承载能力) | 一般 | 差 | 高 | 非常高 |
消息延迟 | 微秒级 | 毫秒级 | 毫秒级 | 毫秒以内 |
消息可靠性 | 高 | 一般 | 高 | 一般 |
追求可用性(当需要处理数据时,资源处于可用状态的程度):Kafka、 RocketMQ 、RabbitMQ
追求可靠性:RabbitMQ、RocketMQ
追求吞吐能力(十万级别的):RocketMQ、Kafka
追求消息低延迟:RabbitMQ、Kafka
通过上述对比最后给大家建议如下:
一般的业务系统要引入MQ,最早大家都用ActiveMQ,但是现在大家确实用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以不推荐用这个了;
后来大家开始用RabbitMQ,由于是erlang语言阻止了大量的Java工程师去深入研究和掌控它,对公司而言,几乎处于不可控的状态,但是确实人家是开源的,比较稳定的支持,活跃度也高;
不过现在确实越来越多的公司会去用 RocketMQ,确实很不错,毕竟是阿里出品,但社区可能有突然黄掉的风险(目前 RocketMQ 已捐给 Apache,但 GitHub 上的活跃度其实不算高)对自己公司技术实力有绝对自信的,推荐用 RocketMQ,否则回去老老实实用 RabbitMQ 吧,人家有活跃的开源社区,绝对不会黄。
所以中小型公司,技术实力较为一般,技术挑战不是特别高,用 RabbitMQ 是不错的选择;大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。
如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。
二、快速入门
1.安装RabbitMQ
1.1单机部署
我们在Centos7虚拟机中使用Docker来安装。
1.1.1下载镜像
方式一:在线拉取
docker pull rabbitmq:3.8-management
方式二:从本地加载(推荐)
【1】将该镜像包上传到虚拟机的tmp目录
【2】上传到虚拟机中后,切换到存放mq.tar文件的tmp的目录
【3】切换目录后使用命令加载镜像即可:
docker load -i mq.tar
【4】查看镜像
1.1.2安装MQ
执行下面的命令来运行MQ容器:
docker run \
# 设置环境变量 用户名是 itcast
-e RABBITMQ_DEFAULT_USER=itcast \
# 设置环境变量 密码是 123321
-e RABBITMQ_DEFAULT_PASS=123321 \
# 挂载数据卷,后面高级会用到下面的插件
-v mq-plugins:/plugins \
# mq的名字
--name mq \
# 主机名 这里不配置也可以,后期如果是集群必须配置
--hostname mq \
# web可视化终端监控端口;mq的ui界面管理平台端口
-p 15672:15672 \
# 程序与mq交互的访问端口;发消息和收消息的端口
-p 5672:5672 \
# 后端运行
-d \
# 镜像名称
rabbitmq:3.8-management
docker run \
-e RABBITMQ_DEFAULT_USER=itcast \
-e RABBITMQ_DEFAULT_PASS=123321 \
-v mq-plugins:/plugins \
--name mq \
--hostname mq \
-p 15672:15672 \
-p 5672:5672 \
-d \
rabbitmq:3.8-management
15672端口:web可视化终端监控端口;mq的ui界面管理平台端口
5672端口:程序与mq交互的访问端口;发消息和收消息的端口
访问路径:http://192.168.200.128:15672/
注意:192.168.200.128是你的linux系统的ip地址。
注意:访问阻塞,则尝试重启mq服务 或者重启docker服务;
重启rabbitmq服务通过两个命令来实现:
rabbitmqctl stop
:停止rabbitmq
rabbitmq-server restart
: 重启rabbitmq
2.MQ的基本结构
【1】RabbitMQ中的一些角色:
- publisher:生产者(发布者)
- consumer:消费者
- exchange:交换机,负责消息路由
- queue:队列、存储消息
- virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离
- channel:表示通道,操作MQ的工具。是消息发布者和交换机之间的连接通道,也是消息消费者连接队列的通道。
【2】将以上的RabbitMQ基本结构归纳为以下四点:
1.消息的发布者(publisher)将消息投递到交换机(exchange)
2.交换机(exchange)将消息转发到与之绑定的队列(queue)
3.消息消费者(consumer)监听队列(queue),获取队列(queue)中的消息
4.将不同的队列(queue)和交换机(exchange)划分成一组,称为虚拟主机(virtualHost)
**注意:**消息的发布者(publisher)只知道对应的交换机(exchange),不知道队列。反之,消息消费者(consumer)只知道队列(queue),不知道交换机(exchange)
3.RabbitMQ消息模型
RabbitMQ官方提供了5个不同的Demo示例,对应了不同的消息模型:
【1】基本消息队列(BasicQueue)
P(producer/publisher):生产者,一个发送消息的用户应用程序。我们自己书写代码发送。
C(consumer):消费者,消费和接收有类似的意思,消费者是一个主要用来等待接收消息的用户程序。我们自己书写代码接收。
队列(红色区域):存在于rabbitmq内部。许多生产者可以发送消息到一个队列,许多消费者可以尝试从一个队列接收数据。
总之:生产者将消息发送到队列,消费者从队列中获取消息,队列是存储消息的缓冲区。
【2】工作消息队列(WorkQueue)
工作消息队列是基本消息队列的增强版,具有多个消费者消费队列的消息。假设消息队列中积压了多个消息,那么此时可以使用多个消费者来消费队列中的消息。效率要比基本消息队列模型高。
【3】发布订阅(Publish、Subscribe),又根据交换机类型不同分为三种:
1、1个生产者,多个消费者
2、每一个消费者都有自己的一个队列
3、生产者没有将消息直接发送到队列,而是发送到了交换机
4、每个队列都要绑定到交换机
5、生产者发送的消息,经过交换机到达队列,实现一个消息被多个消费者获取的目的
X(Exchanges):交换机一方面:接收生产者发送的消息。另一方面:知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!
- Fanout Exchange:广播
将消息交给所有绑定到交换机的队列,生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定。交换机把消息发送给绑定过的所有队列。队列的消费者都能那倒消息。实现一条消息被多个消费者消费。
- Direct Exchange:路由
1.在广播模式中,生产者发布消息,所有消费者都可以获取所有消息
2.在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。在Direct模型下,队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key).消息的发送方在向Exchange发送消息时,也必须指定消息的routing key。
3.P:生产者,向Exchange发送消息,发送消息时,会指定一个routing key。
4.X:Exchange(交换机),接收生产者的消息,然后把消息递交给 与routing key完全匹配的队列
- Topic Exchange:主题
1.Topic类型的Exchange与Direct相比,都是可以根据RountingKey把消息路由到不同的队列。只不过Topic类型Exchange可以让队列在绑定Rounting key的时候使用通配符!
2.RountingKey 一般都是有一个或多个单词组成,多个单词之间以"."分割,例如:item.insert
3.通配符规则:
#
:匹配一个或多个词
*
:匹配恰好1个词
4.入门案例
简单队列模式的模型图:
官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:
- publisher:消息发布者,将消息发送到队列queue
- queue:消息队列,负责接受并缓存消息
- consumer:订阅队列,处理队列中的消息
4.1导入Demo工程
课前资料提供了一个Demo工程,mq-demo:
导入后可以看到结构如下:
包括三部分:
- mq-demo:父工程,管理项目依赖
- publisher:消息的发送者
- consumer:消息的消费者
4.2publisher实现
思路:
- 建立连接
- 创建channel
- 声明队列
- 发送消息
- 关闭连接和channel
代码实现:
代码实现:
package cn.itcast.mq.helloworld;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import org.junit.Test;
import java.io.IOException;
import java.util.concurrent.TimeoutException;
public class PublisherTest {
@Test
public void testSendMessage() throws IOException, TimeoutException {
// 1.建立连接
ConnectionFactory factory = new ConnectionFactory();
// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
factory.setHost("192.168.200.128");
//发送和接收消息的端口号
factory.setPort(5672);
//虚拟主机的地址
factory.setVirtualHost("/");
factory.setUsername("itcast");
factory.setPassword("123321");
// 1.2.建立连接
Connection connection = factory.newConnection();
// 2.创建通道Channel
Channel channel = connection.createChannel();
// 3.创建队列
/*
声明队列
参数1:队列的名称 queueName
参数2:队列是否支持持久化 false:不持久化处理
参数3:队列是否排它:是否允许其它的connection下的channel连接
参数4:是否空闲时自动删除,当最后一个consumer(消费者)断开之后,队列将自动删除。
参数5:参数是rabbitmq的一个扩展,功能非常强大,基本是AMPQ中没有的。这里我们先传递null
*/
String queueName = "simple.queue";
channel.queueDeclare(queueName, false, false, false, null);
// 4.发送消息
String message = "hello, rabbitmq!";
/*
发送消息:
参数1:exchange 交换机 没有就设置为 "" 值就可以了
参数2:routingKey 路由的key 现在没有设置key,直接使用队列的名字queueName
参数3:发送数据到队列的时候,是否要带一些参数。直接赋值null即可
参数4:body 向队列中发送的消息数据
*/
channel.basicPublish("", queueName, null, message.getBytes());
System.out.println("发送消息成功:【" + message + "】");
// 5.关闭通道和连接
channel.close();
connection.close();
}
}
发送之后。MQ内容如下
4.3consumer实现
代码思路:
- 建立连接
- 创建Channel
- 声明队列
- 订阅消息
代码实现:
package cn.itcast.mq.helloworld;
import com.rabbitmq.client.*;
import java.io.IOException;
import java.util.concurrent.TimeoutException;
public class ConsumerTest {
public static void main(String[] args) throws IOException, TimeoutException {
// 1.建立连接
ConnectionFactory factory = new ConnectionFactory();
// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
factory.setHost("192.168.200.128");
factory.setPort(5672);
factory.setVirtualHost("/");
factory.setUsername("itcast");
factory.setPassword("123321");
// 1.2.建立连接
Connection connection = factory.newConnection();
// 2.创建通道Channel
Channel channel = connection.createChannel();
// 3.创建队列
//TODO:如果MQ中有同名的队列就会使用该队列,没有就会创建队列
String queueName = "simple.queue";
channel.queueDeclare(queueName, false, false, false, null);
// 4.订阅消息
/*
参数1:消费者消费的队列名称
参数2:收到消息后自动应答,通知rabbitmq自动剔除已经被消费的消息
参数3:接口消息的回调:一旦队列下有新的消息,则自动回调DefaultConsumer对象下的handleDelivery方法
把消息以入参传入到该方法中
*/
channel.basicConsume(queueName, true, new DefaultConsumer(channel){
@Override
public void handleDelivery(String consumerTag, Envelope envelope,
AMQP.BasicProperties properties, byte[] body) throws IOException {
// 5.处理消息
//TODO:body就是消费端接收到的消息
String message = new String(body);
System.out.println("接收到消息:【" + message + "】");
}
});
System.out.println("等待接收消息。。。。");
}
}
idea控制台打印:
消费完毕,mq会将消息删除
总结:
基本消息队列的消息发送流程:
-
建立connection
-
创建channel
-
利用channel声明队列
-
利用channel向队列发送消息
基本消息队列的消息接收流程:
-
建立connection
-
创建channel
-
利用channel声明队列
-
定义consumer的消费行为handleDelivery()
-
利用channel将消费者与队列绑定
三、SpringAMQP掌握
1.SpringAMQP介绍
SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。
SpringAmqp的官方地址:https://spring.io/projects/spring-amqp
2.BasicQueue简单队列模型
步骤如下:
1.在父工程中引入spring-amqp的依赖
2.在publisher服务中利用RabbitTemplate发送消息到simple.queue这个队列
3.在consumer服务中编写消费逻辑,绑定simple.queue这个队列
2.1在父工程mq-demo中引入依赖
<!--AMQP依赖,包含RabbitMQ-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
2.2消息发送
注意:整个过程一定保证mq的容器是启动的
【1】首先配置MQ地址,在publisher服务的application.yml中添加配置:
spring:
rabbitmq:
host: 192.168.200.128 # 主机名
port: 5672 # 发送消息和接收消息的端口号
virtual-host: / # 虚拟主机
username: itcast # 用户名
password: 123321 # 密码
【2】然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:
1.定义变量保存队列名称
2.定义变量保存消息信息
3.发送消息
package cn.itcast.mq.helloworld;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
//TODO:是一个测试启动器,可以加载SpringBoot测试注解,让测试方法在Spring容器环境下执行
@RunWith(SpringRunner.class)
//TODO:目的是加载ApplicationContext,启动spring容器
@SpringBootTest
public class SpringAmqpTest {
//自动装配RabbitTemplate模板对象
@Autowired
private RabbitTemplate rabbitTemplate;
@Test
public void testSimpleQueue() {
// 队列名称
String queueName = "simple.queue";
// 消息
String message = "hello, spring amqp!";
// 发送消息
rabbitTemplate.convertAndSend(queueName, message);
}
}
2.3消息接收
【1】首先配置MQ地址,在consumer服务的application.yml中添加配置:
spring:
rabbitmq:
host: 192.168.200.128 # 主机名
port: 5672 # 发送消息和接收消息的端口号
virtual-host: / # 虚拟主机
username: itcast # 用户名
password: 123321 # 密码
【2】然后在consumer服务的cn.itcast.mq.listener
包中新建一个类SpringRabbitListener
代码如下:
package cn.itcast.mq.listener;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;
//将当前类放到SpringIOC容器中
@Component
public class SpringRabbitListener {
//监听名称simple.queue队列,Spring只要接收到该队列的消息就会接收消息
@RabbitListener(queues = "simple.queue")
//Spring自动将接收的消息给方法参数msg
public void listenSimpleQueueMessage(String msg) throws InterruptedException {
System.out.println("spring 消费者接收到消息:【" + msg + "】");
}
}
2.4测试
启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息
3.WorkQueue
Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息。
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。
此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。
注意:不一定是两个消费者。
代码实现思路:
1.在publisher服务中定义测试方法,产生50条消息(每隔20ms发送一条),发送到simple.queue
2.在consumer服务中定义两个消息监听者,都监听simple.queue队列
3.消费者1处理50条消息(每隔20ms处理一条),消费者2处理50条消息(每隔100ms处理一条)
3.1消息发送
这次我们循环发送,模拟大量消息堆积现象。
在publisher服务中的SpringAmqpTest类中添加一个测试方法:
/**
* workQueue
* 向队列中不停发送消息,模拟消息堆积。
*/
@Test
public void testWorkQueue() throws InterruptedException {
// 队列名称
String queueName = "simple.queue";
// 消息
String message = "hello, message_";
for (int i = 0; i < 50; i++) {
// 发送消息
rabbitTemplate.convertAndSend(queueName, message + i);
Thread.sleep(20);
}
}
3.2消息接收
要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:
@RabbitListener(queues = "simple.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {
System.out.println("消费者1接收到消息:【" + msg + "】" + new Date());
Thread.sleep(20);
}
@RabbitListener(queues = "simple.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {
System.err.println("消费者2........接收到消息:【" + msg + "】" + new Date());
Thread.sleep(100);
}
3.3测试
一定先启动ConsumerApplocation后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue
以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。
也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。
说明:阐述上述原因是因为队列平均分配给每个消费者,即使当前消费者没有消费完,队列也会将消息分配给消费者。然后消费者一个一个消息消费,即使消费很快的消费者,消费完毕,而消费很慢的消费者一直在消费。这样很不合理。应该是哪个消费者消费快应该多消费。哪个消费者消费慢应该少消费。
3.4能者多劳
在spring中有一个简单的配置叫预取prefetch,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:
spring:
rabbitmq:
listener:
simple:
prefetch: 1 # 消费者每次最多只能预取一条消息,当消费完这条消息后,才能获取下一个消息,这样做的好处是消费能力强的消费者,处理的消息就会更多===》能者多劳
重启消费者模块,运行生产者模块,查看消费者模块控制台:
总结:
Work模型的使用:
- 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
- 通过设置prefetch来控制消费者预取的消息数量
4.发布//订阅
发布订阅的模型如图:
可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:
- Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)
- Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
- Fanout:广播,将消息交给所有绑定到交换机的队列
- Direct:定向,把消息交给符合指定routing key 的队列
- Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列
- Consumer:消费者,与以前一样,订阅队列,没有变化
- Queue:消息队列也与以前一样,接收消息、缓存消息。
Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!
5.Fanout
Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。
在广播模式,消息发送流程是这样的:
- 1) 可以有多个队列
- 2) 每个队列都要绑定到Exchange(交换机)
- 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
- 4) 交换机把消息发送给绑定过的所有队列
- 5) 订阅队列的消费者都能拿到消息
我们的计划是这样的:
- 创建一个交换机 itcast.fanout,类型是Fanout
- 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机itcast.fanout
5.1声明队列和交换机
Spring提供了一个接口Exchange,来表示所有不同类型的交换机:
在consumer中创建一个配置类,声明队列和交换机:
package cn.itcast.mq.config;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class FanoutConfig {
/**
* 声明交换机
* @return Fanout类型交换机
*/
@Bean//@Bean注解特点将修饰方法返回值放到IOC容器中,方法名fanoutExchange作为bean对象的key
public FanoutExchange fanoutExchange(){
//交换机名是:itcast.fanout
return new FanoutExchange("itcast.fanout");
}
/**
* 第1个队列
*/
@Bean
public Queue fanoutQueue1(){
//fanout.queue1表示队列名
return new Queue("fanout.queue1");
}
/**
* 绑定队列和交换机
* TODO:
* 1.Queue fanoutQueue1 : fanoutQueue1表示IOC容器中Queue的bean的对应的key
* 2.FanoutExchange fanoutExchange:fanoutExchange表示IOC容器中FanoutExchange的bean的对应的key是上述方法
* public FanoutExchange fanoutExchange(){}的方法名
*/
@Bean
public Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){
//绑定第一个队列到fanoutExchange交换机上
return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);
}
/**
* 第2个队列
*/
@Bean
public Queue fanoutQueue2(){
//fanout.queue2 表示队列名
return new Queue("fanout.queue2");
}
/**
* 绑定队列和交换机
*/
@Bean
public Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){
//绑定第2个队列到fanoutExchange交换机上
return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);
}
}
5.2消息接收
在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:
@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {
System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}
@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {
System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}
5.3消息发送
在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:
@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {
System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}
@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {
System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}
5.4 结果
总结:
交换机的作用是什么?
- 接收publisher发送的消息
- 将消息按照规则路由到与之绑定的队列
- 不能缓存消息,路由失败,消息丢失
- FanoutExchange的会将消息路由到每个绑定的队列
声明队列、交换机、绑定关系的Bean是什么?
- Queue
- FanoutExchange
- Binding
6.Direct
在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在Direct模型下:
- 队列与交换机的绑定,不能是任意绑定了,而是要指定一个
RoutingKey
(路由key) - 消息的发送方在 向 Exchange发送消息时,也必须指定消息的
RoutingKey
。 - Exchange不再把消息交给每一个绑定的队列,而是根据消息的
Routing Key
进行判断,只有队列的Routingkey
与消息的Routing key
完全一致,才会接收到消息
案例需求如下:
-
利用@RabbitListener声明Exchange、Queue、RoutingKey
-
在consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2
-
在publisher中编写测试方法,向itcast. direct发送消息
6.1基于注解声明队列和交换机
基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。
在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:
/*
TODO:
1. value = @Queue(name = "direct.queue1") 表示绑定的第一个队列
2.exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT) 表示交换机名和类型
3.key = {"red", "blue"} 表示路由key
*/
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "direct.queue1"),
exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),
key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){
System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "direct.queue2"),
exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),
key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){
System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
}
6.2消息发送
在publisher服务的SpringAmqpTest类中添加测试方法:
@Test
public void testSendDirectExchange() {
// 交换机名称
String exchangeName = "itcast.direct";
// 消息
String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
// 发送消息
rabbitTemplate.convertAndSend(exchangeName, "red", message);
}
总结:
描述下Direct交换机与Fanout交换机的差异?
- Fanout交换机将消息路由给每一个与之绑定的队列
- Direct交换机根据RoutingKey判断路由给哪个队列
- 如果多个队列具有相同的RoutingKey,则与Fanout功能类似
基于@RabbitListener注解声明队列和交换机有哪些常见注解?
- @Queue
- @Exchange
7.Topic
Topic
类型的Exchange
与Direct
相比,都是可以根据RoutingKey
把消息路由到不同的队列。只不过Topic
类型Exchange
可以让队列在绑定Routing key
的时候使用通配符!
Routingkey
一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert
通配符规则:
#
:匹配一个或多个词
*
:匹配不多不少恰好1个词
举例:
item.#
:能够匹配item.spu.insert
或者 item.spu
item.*
:只能匹配item.spu
图示:
解释:
- Queue1:绑定的是
china.#
,因此凡是以china.
开头的routing key
都会被匹配到。包括china.news和china.weather - Queue2:绑定的是
#.news
,因此凡是以.news
结尾的routing key
都会被匹配。包括china.news和japan.news
案例需求:
实现思路如下:
-
并利用@RabbitListener声明Exchange、Queue、RoutingKey
-
在consumer服务中,编写两个消费者方法,分别监听topic.queue1和topic.queue2
-
在publisher中编写测试方法,向itcast. topic发送消息
7.1消息接收
在consumer服务的SpringRabbitListener中添加方法:
/*
TODO:
1.value = @Queue(name = "topic.queue1") 表示绑定的第一个队列
2.exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC) 表示交换机名和类型
3. key = "china.#" 表示路由key只要以china开始都会接收
*/
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "topic.queue1"),
exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),
key = "china.#"
))
public void listenTopicQueue1(String msg) {
System.out.println("消费者接收到topic.queue1的消息:【" + msg + "】");
}
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = "topic.queue2"),
exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),
key = "#.news"
))
public void listenTopicQueue2(String msg) {
System.out.println("消费者接收到topic.queue2的消息:【" + msg + "】");
}
7.2消息发送
在publisher服务的SpringAmqpTest类中添加测试方法:
/**
* topicExchange
*/
@Test
public void testSendTopicExchange() {
// 交换机名称
String exchangeName = "itcast.topic";
// 消息
String message = "喜报!孙悟空大战哥斯拉,胜!";
// 发送消息
rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}
总结:
描述下Direct交换机与Topic交换机的差异?
- Topic交换机接收的消息RoutingKey必须是多个单词,以
.
分割 - Topic交换机与队列绑定时的bindingKey可以指定通配符
#
:代表0个或多个词*
:代表1个词
8.消息转换器
之前说过,Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。
只不过,默认的情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下来问题:
- 数据体积过大
- 有安全漏洞
- 可读性差
8.1测试默认转换器
1.消费者
我们在consumer中利用@Bean声明一个队列:
@Bean
public Queue objectMessageQueue(){
return new Queue("object.queue");
}
2.生产者
我们修改消息发送的代码,发送一个Map对象:
@Test
public void testSendMap() throws InterruptedException {
// 准备消息
Map<String,Object> msg = new HashMap<>();
msg.put("name", "Jack");
msg.put("age", 21);
// 发送消息
rabbitTemplate.convertAndSend("simple.queue", msg);
}
停止consumer服务,发送消息后查看控制台:
消息经过jdk序列化处理,阅读性很差,且数据体积过大!
8.2配置JSON转换器
显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。
【1】在publisher和consumer两个服务中都引入依赖:
<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>
<version>2.9.10</version>
</dependency>
【2】在生产者方配置消息转换器。
@Bean
public MessageConverter jsonMessageConverter(){
return new Jackson2JsonMessageConverter();
}
【3】在消费者方配置消息转换器。
@RabbitListener(queues = "object.queue")
public void listenObjectQueue(Map<String, Object> msg) {
System.out.println("收到消息:【" + msg + "】");
}
【4】执行生产者代码,查看mq服务器内容
【5】执行消费者代码,查看idea控制台。
原文地址:https://blog.csdn.net/qq_49288362/article/details/143801069
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!